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Abstract

We study racial disparities in police use of force. A pervasive issue in studies of policing
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and force incidents from Chicago and Seattle, we find that Black civilians comprise 56
percent of arrestees but about 49 percent of potential arrestees. Correcting for sample
selection doubles our measure of the racial disparity in force rates. Decompositions
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1 Introduction

The ability to use physical force against civilians is arguably the most grave exercise of power

available to law enforcement. In recent years, high-profile police killings of unarmed Black

civilians have brought racial disparities in police use of force to the forefront of public con-

sciousness. Even prior to the killing of George Floyd and the associated mass protests during

the summer of 2020, just 35 percent of Black civilians agreed that police treat racial groups

equally and just 33 percent viewed the police as using appropriate levels of force (Desilver

et al., 2020). Moreover, the disparate incidence of police force can have important implica-

tions for youth outcomes in minority communities (Ang, 2021) and for public cooperation

with the police (Ang et al. 2025; Zaiour and Mikdash 2024). While unique in its severity, use

of force is just one of many criminal justice outcomes in the United States marked by racial

disparities. Black individuals are also more likely to be stopped by the police, convicted

of a crime, denied bail, and issued a lengthy prison sentence than observably similar white

individuals (National Academies of Sciences et al., 2022).

An important obstacle to understanding racial disparities in criminal justice outcomes

arises from the fact that available data typically only include interactions initiated at the dis-

cretion of criminal justice agents. Researchers interested in studying bail decisions, criminal

convictions, or incarceration, for example, are generally only able to observe these outcomes

among a sample of individuals who police choose to arrest, prosecutors choose to charge with

an offense, or judges choose to convict. The behavior of these agents may generate racial

disparities on the margin of whom is selected into the data, rendering disparities measured

in the selected sample challenging to interpret (e.g., Knox et al. 2020). In particular, dispar-

ities in the selected sample are often uninformative about the differential risk of treatment

without additional strong and untestable assumptions.

In this paper, we develop a novel empirical strategy for estimating disparities when the

data suffer from this type of sample selection bias, and we apply this strategy to study racial

disparities in police use of force among arrestees. Our strategy combines two key insights: 1)

a selection-corrected disparity can be calculated with an estimate of the racial composition

of the potentially-selected sample; and 2) this racial composition can be identified from the

agents with the highest propensity to select people into the sample. Using data from two

large, urban police departments, we find strong evidence of racial disparities in arrests among

potential arrestees. Accordingly, we find that disparities in police use of force which account

for this selection bias are about twice as large as the naive disparity in the selected sample.

We begin by presenting a general conceptual framework where agents randomly encounter

individuals and face two sequential, binary choices: whether to select an individual into the

1



data and then whether to treat them. In our empirical application, these are a police officer’s

choices to (i) make an arrest and (ii) use force during the arrest. This conceptual framework

highlights that racial disparities computed in the selected sample suffer from selection bias

when there are racial differences in the probability of being selected into the data. It also

illustrates that this sample selection bias can be corrected with an estimate of the racial

composition of the potentially-selected sample of interest.

We then apply the ideas from our conceptual framework using detailed data from the

Chicago and Seattle police departments, where we can observe officers’ work shifts, arrest

records with offense and arrestee information, and each incident of police use of force. We pro-

pose an econometric approach for estimating the key parameter for selection correction, the

racial composition of the potentially-selected sample, which leverages variation across police

officers in the propensity to select individuals into the data. The first step of our approach is

to measure variation across officers in their enforcement intensity by estimating each officer’s

average number of arrests per shift they work, adjusting for detailed assignment fixed effects.

We then use the racial composition of individuals arrested by the most-enforcing officers,

again adjusting for detailed assignment effects, as our estimate of the racial composition of

the potentially-arrested sample.

Our econometric approach relies on two assumptions. The first is an exogeneity assump-

tion requiring that officers patrolling the same assignment encounter the same set of potential

arrests. The second, which we term extremum-agent monotonicity, requires the existence of

some maximally-enforcing officer such that, if any other officer arrests a particular civilian,

this extremum officer does as well. In other words, there is some officer that makes any arrest

which would also be made by another officer. These two assumptions jointly imply bounds

on the composition of each officer’s selected sample of arrestees, with these bounds deter-

mined by the composition of the extremum officer’s arrests and a given officer’s enforcement

intensity relative to that of the extremum officer. Using these bounds, we can validate our

assumptions by jointly testing a series a moment inequalities, and this test fails to reject the

joint null of exogeneity and extremum officer monotonicity.

Given these assumptions, our approach recovers the racial composition of a particular

sample of interest: individuals who would be arrested by some officer in our data. This is a

conceptually and econometrically well-defined sample that represents the set of individuals

who are actually at risk of facing force during an arrest. Considering the emphasis of U.S.

case law on the application of “reasonable officer” standards, we also view this sample as

likely representative of the set of individuals who are legally eligible to be arrested in practice,

as we discuss further in section 2.3 below.
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While Black civilians comprise 56 percent of the selected sample of arrestees, we estimate

that they make up about 49 percent of the unselected sample of potential arrestees, indicating

that differential selection into the data is empirically relevant in this setting.1 Our estimates

imply that among potential arrestees, Black individuals are about three percentage points, or

thirty percent, more likely to be arrested. This estimate advances a large literature on racial

disparities in the criminal justice system. In particular, while scholars have documented

racial disparities in traffic and pedestrian stops and searches, as well as at various downstream

stages of the system such as pretrial detention and sentencing, disparities at the arrest stage

have received minimal attention.

Following from our conceptual framework, we then use our estimate of the racial compo-

sition of potential arrestees to compute an unselected (i.e., adjusted for differential sample

selection) disparity in police use of force. In the selected sample, non-Black civilians face

force in 2.3 percent of arrests and Black civilians are 0.55 percentage points more likely to

experience force. Our estimate of the unselected disparity is 1.1 percentage points, or about

twice as large as the naive disparity in the selected sample. The difference between selected

and unselected disparities is statistically significant at conventional levels and this finding

withstands an array of alternative specifications and various robustness tests.

While our baseline estimate corresponds to the racial disparity in risk of force among

potential arrestees, it does not necessarily align with conventional notions of “causal” dis-

crimination because this disparity could arise due to differences in non-race characteristics

across groups. To contextualize our analysis within the broader discrimination literature,

we use a Kitagawa-Oaxaca-Blinder (KOB) decomposition approach to parse the unselected

disparity into components which are within and across non-race observables (gender, age,

and criminal offense type). We find that about 70 percent of the unselected disparity is

within-observables. This within-characteristics disparity corresponds to the causal effect of

race on police use of force among potential arrestees under an additional selection on ob-

servables assumption, and we interpret the results of this KOB decomposition as suggesting

an important role for racial discrimination in driving the disparity we find.

We also consider the implications of our findings for the conclusions in Fryer Jr (2019),

who examines racial disparities in police use of force across a range of data sources and

force outcomes. Notably, while Fryer Jr (2019) finds typical Black-white disparities for less

severe forms of force, he finds, if anything, negative gaps (i.e., “reverse discrimination”)

when examining the most serious force types. Concerns about selection bias in Fryer Jr

1More specifically, we find that the share Black among an officer’s arrestees declines with an
officer’s enforcement intensity and is the smallest, on average, among the most-enforcing officers.
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(2019)’s seminal paper have prompted responses focused on the potential importance of

unrepresentative samples (Durlauf and Heckman, 2020) or constructing bounds based on

assumptions about selection bias (Knox et al., 2020), as well as motivated studies focusing

on related but alternative estimands of interest (Ba et al., 2021; Hoekstra and Sloan, 2022;

Schwartz and Jahn, 2020). Assuming a proportionally similar rate of differential selection

into the data by race (within non-race observables) in his settings and ours, we compute

selection-adjusted versions of the estimates in Fryer Jr (2019). We show that our estimated

differential selection is sufficient to erode, but not reverse, his force gaps in officer-involved

shootings. Our paper advances the emerging literature on racial disparities in police use of

force in economics by providing the first estimates of racial disparities in police use of force

which correct for sample selection bias.

Our methodological approach, which uses variation in enforcement intensity across police

officers, builds on a growing literature documenting the importance of variation in discre-

tionary behavior among criminal justice agents (e.g. Ba et al., 2021; Adger et al., 2022;

Feigenberg and Miller, 2022; Chalfin and Goncalves, 2023; Goncalves and Mello, 2021, 2023;

Weisburst, 2024; Rivera, 2025). Our approach is an application of “identification at infinity”

ideas in selection models, originating with Chamberlain (1986) and Heckman (1990) and

popularized by Hull (2020) and Arnold et al. (2022). We illustrate how these ideas can

be applied to a broader set of questions and institutional contexts with our version of a

monotonicity assumption.

Our paper also builds on a methodological literature in economics focusing on addressing

identification and estimation issues arising from selection bias (e.g. Heckman, 1979; Manski,

1990; Lee, 2009; Dutz et al., 2021). Importantly, this literature typically focuses on contexts

where the full population of interest is directly observed but the outcome data are incom-

plete; a notable example is studies of earnings inequality that account for non-employment

(e.g. Neal, 2004; Blundell et al., 2007). In contrast, we provide a framework and empirical

strategy for addressing selection bias when the population of interest is unobserved. Our

methodological approach could be applied in a wide range of settings where agents have

discretion in determining selection into administrative datasets, such as medical referrals,

school admissions, or caseworker decisions in a wide array of social service contexts.

Finally, our paper contributes to an emerging literature on discrimination in systems

with multiple stages (Baron et al. 2024; Bohren et al. 2025) by illustrating the relevance of

racial disparities at one stage of the criminal justice system (arrests) for the inferences one

can draw at later stages. Along these lines, we view our finding of differential arrest rates by

race as an important contribution to the broader literature focused on understanding racial
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disparities in the criminal justice system. As shown in figure 1, evidence from nationally

representative datasets suggests that arrests are the stage of the criminal justice system

at which racial disparities meaningfully emerge. Moreover, while our analysis focuses on

quantifying disparities in the risk of facing police use of force, the disparate arrest rates we

document have important implications for understanding disparities at any stage which is

downstream from an arrest. As an illustrative example, we provide a back-of-the-envelope

calculation of the selection-adjusted disparity in pretrial detention rates using summary

statistics reported in Dobbie et al. (2018). The extent of differential selection in our analysis

implies a selection-adjusted disparity on this margin which is three times larger than the

disparity in the selected sample of arrestees.

The rest of our paper is organized as follows. Section 2 presents our conceptual frame-

work, highlighting the identification problem, interpreting our selection-corrected estimand,

and defining the unobserved population of interest. In section 3, we discuss our data and

empirical setting, providing additional context for our focus on arrests as the selection stage

of interest. Section 4 lays out our empirical strategy for identifying the racial composition of

the potentially-selected sample using the most enforcing officers and discusses the assump-

tions required for our approach. In section 5, we present our main results, various robustness

checks, and tests of our key assumptions. Section 6 discusses and contextualizes our results

in the broader literature on discrimination and disparities in police of force.

2 Conceptual framework

2.1 Identification problem

We consider a setting with individuals i who encounter a set of agents j ∈ J . In each

possible interaction, agents have two binary choices. First, they decide whether to select the

individual into the sample, Sij ∈ {0, 1}. In our analyses, this is an officer’s choice to make

an arrest but could represent, for example, the choice to make a traffic or pedestrian stop

in other settings. Next, for those individuals with Sij = 1, the agent decides whether to

treat the individual, Dij ∈ {0, 1}. In our setting, Dij is the decision to use force during an

arrest. We denote the officer who encounters individual i by ji. The realized outcomes of an

individual are Si =
󰁓

j∈J 1I[ji = j]Sij and Di =
󰁓

j∈J 1I[ji = j]Dij.
2

2Note that this setup is consistent with supposing that there is a potential treatment outcome
D∗

ij in an interaction, with the realized treatment outcome depending on selection, Dij = D∗
ijSij .

We consider this extended formulation below when differentiating our estimand of interest from
the target estimand in a traditional Heckit selection correction.
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Individuals i differ by their race, Ri ∈ {b, w},3, other observable characteristics Xi, and

unobservable characteristics θi. For now, we abstract away from non-race characteristics and

focus our interest on an average racial disparity in treatment.

We are interested in individuals who comprise a particular sample, whose membership is

defined by Pi ∈ {0, 1}. Our primary object of interest, which we denote by ∆, is the racial

disparity in realized treatment among individuals in this sample:

∆ = E[Di|Ri = b, Pi = 1]− E[Di|Ri = w, Pi = 1] (1)

We refer to the group with Pi = 1 as the target sample. We keep this notion general for

now, imposing only that this sample contains the set of individuals who would be selected

by any agent, Pi ≥ maxj∈J Sij ≥ Si, and discuss the specific target sample of interest for

our empirical application below in section 2.3. For notational simplicity, we suppress the

conditioning on target sample membership throughout the remainder of this section and

treat Pi as including all individuals in our setting.

Note that ∆ does not necessarily correspond to a causal difference in treatment at-

tributable to race. Specifically, ∆ ∕= 0 could reflect disparate treatment attributable to

non-race characteristics which are correlated with race. We begin by focusing on this uncon-

ditional estimand to highlight that sample selection bias presents issues even for estimating

an unconditional disparity. Our first goal is to address the sample selection bias hurdle to

identifying ∆. We then discuss the relationship between ∆ and other notions of discrimina-

tion (i.e., disparities conditional on non-race characteristics), as well as compute versions of

the conditional disparity, in section 6.1.

The main identification challenge arises because ∆ cannot be estimated with an empirical

analogue. We can observe individuals who are selected into the sample (Si = 1) but not

those who are unselected (Si = 0). Comparing treatment outcomes only among those who

are selected, which we term the selected disparity ∆s, gives:

∆s ≡ E[Di|Ri = b, Si = 1]− E[Di|Ri = w, Si = 1]

=
E[Di|Ri = b]

E[Si|Ri = b]
− E[Di|Ri = w]

E[Si|Ri = w]
± E[Di|Ri = w]

E[Si|Ri = b]

=
∆

E[Si|Ri = b]
+

󰀥
E[Si|Ri = w]

E[Si|Ri = b]
− 1

󰀦
E[Di|Ri = w, Si = 1]. (2)

3Throughout our analysis, we define racial groups as Black (denoted by b) and non-Black (de-
noted by w). We use this definition because (i) our empirical approach requires a binary notion of
race; (ii) Black versus non-Black disparities are particularly salient in public datasets; (iii) Hispanic
status is not reported for arrestees in the data from one of our settings (Seattle).

6



The second equation follows from the fact that Si = 0 implies Di = 0. Equation (2)

highlights that, for example, a relatively higher likelihood of selection for Black individuals

(E[Si|Ri = b] > E[Si|Ri = w]) will yield a downward bias in the selected disparity, ∆s <

∆/E[Si|Ri = b]. It also highlights that ∆ and ∆s can even have different signs because they

differ beyond a scaling factor.4

We can also observe here that, even without a sample selection issue, the parameters ∆s

and ∆ have different scales, since the former is conditional on selection into the sample while

the latter is conditional only on target sample membership. In most settings, we expect the

selection rate to be quite low (e.g., in the U.S., only 12 percent of property crimes are cleared

via an arrest). Hence, to identify an unselected disparity which is comparable to the selected

disparity in terms of scale, we focus on the problem of identifying a rescaled version of ∆:

∆̃ ≡ ∆/E[Si|Ri = b] (3)

2.2 Solution to identification problem

Our goal is to estimate a disparity in treatment which is unconditional on sample selection.

Using Bayes’ rule to rewrite the race-specific selection probabilities in (2) yields the following

expression for ∆̃:

∆̃ = ∆s +

󰀗
1− π

1− π
· 1− πs

πs

󰀘
E[Di|Ri = w, Si = 1], (4)

where π and πs are the Black shares of the target and selected samples, respectively. The

selected data directly provide us with ∆s, πs, and E[Di|Ri = w, Si = 1]. Hence, the unse-

lected race share π is the only unknown in (4), and the challenge of identifying ∆̃ reduces to

identifying the Black share of the target population.5

2.3 Target sample definition

The discussion above illustrates how one can adjust the disparity in a selected sample for

selection bias arising due to differential selection into the data with an estimate of the racial

composition of the target sample of interest. Of course, both the interpretation and empirical

implementation of this idea depend critically on the notion of the target sample.

4In appendix figure A-1, we provide an intuitive and straightforward visualization of the iden-
tification problem highlighted by equation (2).

5Note that estimating the unscaled ∆ (rather than the rescaled ∆̃) also relies only on observed
data plus an estimate of π and E[Si], since ∆ = ∆̃E[Si|Ri = m] = ∆̃πs

π E[Si].
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In our empirical work, we examine use of force (Di) occurring during arrests (Si) and

define the target sample of interest as:

Pi = max
j∈J

Sij,

or in words, the set of individuals for whom there is at least one officer j ∈ J that would

arrest them. This is a conceptually and econometrically well-defined sample and represents

the set of individuals who are at risk of facing force during an arrest. As described further in

section 4 below, we identify the racial composition of this sample from the racial composition

of the most enforcing officers, or those with the highest propensity to make arrests.

Given the relevant case law and the de facto, if not de jure, legal environment with respect

to the validity of officer arrest decisions, there is also an argument for viewing this sample

as equivalent to the set of individuals who are legally eligible to be arrested. In the U.S., the

legal standard for an arrest is a reasonable basis for believing that a crime may have been

committed at the time of an arrest. Although charges may be dismissed by a prosecutor

or judge after the fact, the legality of initial arrest decisions are rarely overturned. The

Supreme Court has held that officers are protected against civil lawsuits under qualified

immunity as long as another “reasonable” officer would have made a similar decision in

comparable circumstances.6

While not necessarily given a formal or explicit treatment in the existing literature, im-

plicit conceptual and empirical questions about the target sample (as we define it) lurk

throughout several strands of research on the criminal justice system. For example, scholars

interested in racial disparities in traffic or pedestrian stops have compared the racial com-

position of stops with that of various benchmarks, including stops during darkness (Grogger

and Ridgeway, 2006), motorists involved in accidents (Alpert et al., 2004), stops made by

specific officer subgroups (e.g., Ridgeway and MacDonald 2009; Ba et al. 2021), and bench-

marks constructed from telematics data (e.g., Cai et al. 2022; Aggarwal et al. 2025), each of

which implicitly corresponds to a choice of target sample.

The issue of the “correct” target sample has also proven salient in the courts and among

policymakers. In response to arguments during Floyd et al. vs. the City of New York (2008),

then-Mayor Bloomberg delivered a public critique of the plaintiff’s claims that differences

in the racial composition of pedestrian stops and the city’s population reflect discriminatory

6See Legal Information Institute, Cornell University (https://www.law.cornell.edu/wex/
probable_cause) and District of Columbia v. Wesby, 583 U.S. (2018) (https://supreme.justia.
com/cases/federal/us/583/15-1485/). We provide some additional discussion of the relevant le-
gal environment in appendix C.
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behavior by the police, essentially arguing that the sample eligible to be stopped is different

than the population as a whole (Bloomberg, 2013).

We acknowledge some potential caveats associated with our stance on the target sample.

First, this definition is context-specific in the sense that it depends on the set of officers

working; changes in the set of agents j ∈ J can correspond to changes in the set of individuals

in the target sample.7 And second, while this sample includes all individuals at risk of force

during an arrest, it does not include all individuals at risk of force because some force

incidents occur during interactions which do not result in an arrest.

We further discuss our focus on force among arrestees below in section 3.1 and we re-

turn to the question of the target sample in section 5.4. There, we report estimates when

alternatively defining the full population as the target sample of interest, as well as discuss

alternative target samples of interest beyond the one above and the potential of our empirics

to speak to questions about these other target samples.

2.4 Interpreting our estimand

How do we interpret our target estimand ∆̃, and how does it differ from alternative estimands

for racial differences in use of force? This estimand measures the racial difference in the

likelihood of experiencing force by individuals in the target sample. Note that this difference

is an observational object, and our goal at first is not to interpret it as the causal effect of

civilian race on police force. In section 6.1, we decompose ∆ into components that are due to:

1) racial differences in other civilian demographics and incident characteristics, and 2) racial

force gaps for individuals with the same characteristics. In appendix B, we show that this

latter component can be interpreted as the causal effect of race on force for the target sample

under a standard “conditional unconfoundedness” (or selection on observables) assumption.

Also worth highlighting here is how our estimand differs from that of standard selection

correction approaches in labor economics a la Heckman (1979), since the distinction has

important implications for both our conceptual framework and our empirical implementation.

Suppose that there is a potential treatment outcome D∗
ij in an interaction which reflects

whether force is used if the individual is selected into the sample, with the observed outcome

given by Dij = D∗
ijSij. The goal of the Heckman (1979) approach is to estimate ∆∗ =

7A related implication is that our target sample definition will include discrimination that is
practiced broadly by all officers when making selection decisions. In other words, the target sample
may differ from a group deemed sufficiently guilty to be arrested by some objective measure (e.g.,
the target samples in Cai et al. 2022 or Aggarwal et al. 2025). We discuss this consideration
further in section 5.4 and provide evidence against the concern that the target sample we identify
is “contaminated” by discrimination at the selection margin practiced by all officers.
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E[D∗
ij|Ri = b, Pi = 1] − E[D∗

ij|Ri = w, Pi = 1]. In words, this estimand measures the force

disparity if all potential arrestees were arrested, whereas our estimand measures the force

disparity at observed values of arrest and force outcomes. In many applications of the Heckit

approach, such as missing wages among the unemployed, this “fully selected” counterfactual

is a much less dramatic extrapolation from the observed data than in our context, where we

expect selection rates to be quite low (as noted above).

Although there are perhaps conceptual reasons to prefer one estimand over the other and

vice versa, our estimand can be recovered under much weaker assumptions, as we discuss

further in section 4 and appendix B.5. Implementation of the Heckit estimator requires the

availability of an instrument that satisfies: 1) strict monotonicity, so that the instrument

weakly shifts all individuals’ selection outcome (arrest) in the same direction, and 2) exclu-

sion, so that it impacts selection into the sample (arrest) but does not impact treatment

(force). If officer identity were used in this estimator, the latter assumption requires that of-

ficer arrest propensity is independent of force propensity. In contrast, our empirical strategy,

which we describe below, will impose neither strict monotonicity nor exclusion.

The existing literature has recognized the threat of sample selection bias to the study

of racial disparities in the criminal justice system and our conceptual framework provides

a useful structure for interpreting the various approaches taken in prior work. West (2018)

studies a setting with no officer discretion over whether an incident enters the data, police

investigations of car accidents, so that racial gaps are free of selection bias. In our frame-

work, this institutional feature implies Si = Pi. Knox et al. (2020), who develop a similar

conceptual framework to ours, show how directional assumptions on the patterns of sample

selection (e.g. πs ≥ π) can provide informative bounds on the selection-corrected force gap.

Aggarwal et al. (2025) tackle this challenge in traffic stops data and use rich administrative

data from a rideshare app to directly measure the distribution of true offending by race,

allowing them to measure E[Si|Ri] and test for differences in being stopped by an officer by

driver race. Another class of studies has relied on information about officer race and asks

how force disparities by civilian race vary by officer race (e.g., Ba et al. 2021; Hoekstra and

Sloan 2022; Antonovics and Knight 2009). While this strategy identifies a different target

estimand from ours (Anwar and Fang, 2006), it offers an approach that is not susceptible to

sample selection bias.

The closest paper to ours in terms of empirical setting and estimand of interest is Fryer Jr

(2019), who estimates racial differences in police use of force using multiple datasets on

individuals who encounter the police in the context of stops or arrests. Fryer Jr (2019)

explicitly notes the concern of sample selection bias and takes the approach of conditioning

10



on a rich set of observable characteristics X measuring a civilian’s demographics and the

circumstances of the police encounter. As we describe in section 6.2 below, this approach

requires that E[Si|Xi, Ri] = E[Si|Xi], or that race is uninformative about selection into the

sample after conditioning on X.

3 Setting and data

3.1 Context

Approximately 2,000 people are killed by police each year in the U.S., and survey evidence

suggests that 2 percent of police interactions (over 1 million incidents) involve the threat or

use of force (Burghart, 2024; Tapp and Davis, 2022). While rare in absolute terms, police

use of force is relatively common in the United States; police are responsible for 3.4 civilian

deaths per 1 million persons in the U.S., a rate that is over 3 times higher than the rate

in Canada and over 10 times higher than rates in England or France (Hirschfield, 2023).

Research on police use of force in the U.S. has typically focused on fatal force events, as

national data on these incidents is more readily available.

Our analysis focuses on the cities of Seattle, WA and Chicago, IL. Appendix table A-1

illustrates how these two cities to compare to other large and medium-sized cities in the U.S.

using information from the FBI’s Uniform Crime Reports (UCR), as well as information from

the American Community Survey (ACS) and Fatal Encounters, a crowdsourced database of

fatal use of force events. Chicago is one of the largest cities in the U.S. with relatively high

rates of violent crime and a relatively large police force. Seattle has above average property

crime rates and below average poverty rates. Both cities have higher rates of fatal police use

of force than the typical large city.

We examine use of force by police officers occurring during arrests and, accordingly,

the sample selection problem of interest is the concern that officers may differentially make

arrests of potential arrestees across racial groups. Force events require in-person interactions

between civilians and officers. When an officer arrests an individual, the event can involve

resistance from the civilian, combativeness between the civilian and officer, and/or aggression

on the part of an officer, each of which can contribute to a force event. Given these dynamics,

researchers have often examined force outcomes coinciding with arrests (Fryer Jr, 2019;

Weisburst, 2019) and we mirror this focus in our analysis. A large share of use of force

incidents occur during arrests; in our data, 62 percent and 80 percent of force events can be

linked to an arrest in Chicago and Seattle, respectively.8

8For the set of force incidents that are not linked to an arrest, only a small share have an
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Another motivation for our focus on force during arrests is that analyzing disparities at

the arrest margin is interesting in its own right. Although disparities at this stage have

received substantially less attention than disparities at other stages of the criminal justice

system in the literature – in part because of the empirical challenge of identifying a compar-

ison group of individuals who are at risk of an arrest – figure 1 highlights that this margin

may be especially important for understanding racial disparities in the criminal justice sys-

tem more broadly. In the U.S., Black civilians comprise 12 percent of the overall population

but about 33 percent of the incarcerated population. Black civilians also comprise about 12

percent of police-initiated contacts in the Police-Public Contact Survey but make up 26 per-

cent of all arrestees according to the FBI. In other words, a sizable share of the well-known

racial disparities observed at later stages of the criminal justice system appears to emerge

at the arrest stage.

3.2 Data sources

For both Seattle and Chicago, our data include administrative records of each arrest made,

each incident of police use of force, and records of each shift an officer works, typically called

the “watch” data. Our data from Chicago cover the years 2012–2015 and our data from

Seattle cover the years 2019–2022.

The arrest data include information on the charge or offense type, and both the arrest

and force data include time stamps and information on location, involved officer(s), and some

basic demographics on the arrestee or force victim. The watch data include each shift an

officer works, including their rank during that shift (i.e., police officer or sergeant), shift start

and end times, and assigned geography. These data are crucial for our empirical approach

because they allow us to observe when officers work but do not make arrests, permitting

the measurement of variation across officers in the propensity to make arrests. We link each

arrest and each force incident to an officer × shift in the watch data using information on the

officer(s) involved and the date/time of the incident. We also link arrests to force incidents

using a combination of incident numbers, date/time, and involved officers.

Although Chicago and Seattle use slightly different names for the various notions of police

geography, we adopt a harmonized terminology throughout the paper for consistency. We

use division to refer to the largest sub-city areas (“police area” in Chicago and “precinct” in

Seattle), sector to refer to the largest areas within divisions (“district” in Chicago and “sec-

identifiable originating event. In Chicago and Seattle, just 1 and 5 percent of force incidents
originate with a non-arrest incident, respectively.
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tor” in Seattle), and beat to refer to smallest geographic division (“beat” in both settings).9

Append figure A-3 illustrates the relevant police geographies in both cities.

For our empirical analysis, we construct two primary datasets. The first is a panel dataset

at the officer × shift level (i.e., one observation for each shift an officer works). This dataset

includes information on the shift’s time of day, day of week, assigned sector, and number

of arrests made during each shift. We use only shifts worked at the rank of “police officer”

(i.e., dropping detectives or commanding officers) and require that an officer work 100 such

shifts for inclusion in our analysis sample.

The second is a dataset at the arrestee level (i.e., one observation per arrest). This

dataset includes information on the date, time, and location of the arrest, information on

the age, race, and gender of the arrestee, information on the criminal offense, the identity

of the officer(s) making the arrest, and whether force was used during the arrest. We keep

only arrests which can be linked to an officer × shift included in the above panel dataset.

For our baseline analysis, we pool the data from Chicago and Seattle together (although

all our fixed effects will be allowed to vary across settings). Where relevant, we test the

validity of stacking the data together and also show our core results separately by setting or

using alternative approaches relying only on within-city analytical approaches. Our pooled

officer × shift panel dataset includes approximately 2.2 million shifts worked by just under

5,000 unique officers. Our pooled arrestee dataset includes 134,361 arrests, which covers

about 65 percent of the total arrests in our data (the majority of excluded arrests are those

made by detectives; the remainder are those made by officers who do not work a sufficient

number of shifts for inclusion in our panel dataset). Appendix table A-2 reports summary

statistics for this analysis sample of arrestees.

3.3 Disparities in the selected sample

Table 1 examines racial disparities in police use of force in the selected sample of arrestees.

Specifically, we report results from a series of regressions where the outcome of interest is

whether an arrest results in police use of force. As shown in column (1), Black arrestees are

0.6 percentage points more likely to face force, or about 25 percent more likely relative to a

non-Black average force rate of 0.023.

Controlling for detailed fixed effects at the level of the beat × 1[weekend] × time of day

and division × year × month (which are the fixed effects we use in our baseline empirical

9In Chicago, there is an additional geography between district and beat. We use districts for
the mid-tier geography (“sector”) (i) because these align well with the geographic scope of sector
in Seattle and (ii) district is comprehensively identified in the Chicago datasets.
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specification, as described below) reduces the disparity slightly to to 0.55 percentage points.

Adding in other demographics (age and gender) as controls slightly increases the estimated

disparity, while further controlling for crime type reduces the gap to 0.47 percentage points.

The disparity reported in column 2, which conditions on our “design” fixed effects but

not on other non-race characteristics, is the disparity we focus on adjusting for differential

selection into the data. Figure 2 visually depicts the idea of our selection adjustment pro-

cedure, represented by equation (4). In this figure, the horizontal axis denotes the Black

population share and the vertical axis captures the hypothetical force disparity between

Black and non-Black individuals in the target sample. The solid blue circle corresponds to

the moments from our selected sample of arrestees: 56 percent of arrestees are Black and

Black arrestees are 0.55 percentage points more likely to face force. The solid blue line re-

ports ∆̃, the selection-corrected disparity, as a function of π, the Black share of the target

sample. As π moves below the fraction Black in the selected sample πs, indicating a higher

selection probability for Black potential arrestees, we adjust the disparity upward (and vice

versa). Our central empirical goal is to estimate π, the Black share of the population at risk

of arrest.

4 Empirical approach

4.1 Measuring officer enforcement intensity

The first step in our empirical analysis is to measure variation in the propensity to make

arrests, which we term enforcement intensity, across officers. To do so, we use our panel

dataset at the officer × shift level and estimate the following regression:

Njt = αj + φs + κdt + ujt (5)

where Njt is the number of arrests made by officer j during a given shift t,10 the αj’s are

officer fixed effects, the φs’s are assignment fixed effects at the level of the assigned sector ×
shift (time of day) × weekend versus weekday, and the κdt’s are division × year ×month fixed

10To avoid double-counting arrests in this first-stage regression, we divide each arrest by the
number of arresting officers when computing N (e.g., if an officer makes one arrest in a given shift
which is shared with one other officer, N = 0.5). We show that results are unchanged when using
other measures of N in appendix table A-4.
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effects.11 From this regression, we compute each officer’s adjusted enforcement intensity:

Ñj = α̂j + E[φ̂s + κ̂dt],

or an officer’s expected number of arrests per shift when working in the average assignment.

In panel (a) of appendix figure A-4, we report the distribution of estimated Ñj’s across

officers. The average officer makes 0.6 arrests per shift, but the distribution is very right-

skewed, with an officer at the 99th (100th) percentile making 0.28 (0.74) arrests per shift.

Figure A-4 also provides evidence that this between-officer variation represents “true” vari-

ation (as opposed to estimation error) by illustrating that an empirical Bayes shrinkage

procedure (Morris, 1983) has only minimal impacts on the degree of dispersion across offi-

cers. Consistent with Ba et al. (2021) and Weisburst (2024), appendix table A-3 shows that,

based on this measure of adjusted arrest volume, white, male, and younger officers tend to

exhibit more intense enforcement behavior.

Panels (b) and (c) of appendix figure A-4 provide further validation of these officer

enforcement intensity estimates. In panel (b), we estimate Ñj’s for separate partitions of the

data based on patrol locations and time and show that an officer’s estimated arrest activity in

one location or time period is highly predictive of their arrest activity in other locations and

time periods. In panel (c), we provide a “first-stage” style estimate by randomly partitioning

each officer’s shifts into two groups, estimating a Ñj in each partition, and then regressing

an officer’s arrest activity on their estimated Ñj in the opposite partition, controlling for

assignment and division-time fixed effects.

Our goal is to assign each arrest the enforcement intensity of the arresting officer. A minor

complication arises from the fact that many arrests in our data involve multiple officers (as

depicted in appendix figure A-2). To construct an arrest-level enforcement intensity measure,

we follow the approach of Amaral et al. (2023) and take the average of the estimated Ñj’s

among arresting officers, weighting by each officer’s total number of shifts. This feature of

arrests means that the enforcement measure actually varies at the level of a group of officers,

g ∈ P(J ), where P(J ) represents all subsets of J . For simplicity of notation and exposition,

we continue to denote enforcement intensity as Ñj and refer to “officer-level” enforcement,

with the understanding that the variation is actually at the officer-group level.12

Figure 3 provides further validation for our approach by illustrating the relationship be-

11As discussed in section 3.2, sectors are sub-units of divisions in both cities. In Chicago (Seattle),
there are 5 (5) divisions and 22 (17) sectors. See appendix figure A-3 for the relevant maps.

12As robustness, we consider the sensitivity of our main estimates to alternative approaches for
aggregating the officer-level Ñj ’s into an arrest-level measure, including approaches which abstract
from the need for aggregation by assigning one officer to each arrest, in appendix table A-4.
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tween this arrest-level enforcement intensity measure and the crime type associated with

each arrest. The likelihood that an arrest is for a serious crime declines sharply with our en-

forcement intensity measure, suggesting that high-enforcement officers are making additional

arrests for less serious crimes relative to low-enforcement officers.

4.2 Identification of π

Our strategy for identifying π, the Black share of the target population, relies on this vari-

ation in enforcement intensity across officers and builds on the “identification at infinity”

ideas advanced in recent research (e.g., Hull 2020, Arnold et al. 2022). The spirit of our

approach is to use the racial composition of the most enforcement-intensive officers as our

estimate of π. We discuss estimation in further detail in section 4.3 below.

Our approach relies on two assumptions. First, we require an exogeneity assumption

which states that, within assignments (which we denote by the shift-time pair s, t), officers

are randomly matched to potential arrests. Note that this does not imply that officers are

randomly assigned to arrestees. Instead, this assumption is equivalent to stating that officers

working in the same assignment encounter the same set of potential arrestees. And second,

we assume the existence of some “extremum” officer j∗ such that, if any other officer j ∕= j∗

arrests an individual, the extremum officer j∗ also arrests that individual. Stated formally,

these assumptions are:

1. Exogeneity : (Ri, Xi, θi, {Sij, Dij}j∈J ) ⊥ ji | (s, t).

2. Extremum-Agent Monotonicity : ∃ j∗ ∈ J s.t., ∀i, j, Sij = 1 ⇒ Sij∗ = 1.

Now, consider the set of individuals who hypothetically would be selected by the extremum

officer j∗. These individuals are weakly a subset of the target population as defined in section

2.3, since Sij∗ ≤ maxj∈J Sij. By extremum-agent monotonicity, all individuals selected by

any officer would be selected by j∗, so we also have that maxj∈J Sij ≤ Sij∗ . Therefore,

the extremum officer’s pool of (hypothetically) selected individuals is the target sample of

all potential arrestees, Sij∗ = maxj∈J Sij = Pi. Further, because of random assignment

of officer-civilian encounters, individuals who are observed as arrested by officer j∗ are in

expectation identical to the target sample. Their characteristics can thus be used to identify

the racial composition of the target sample:

Pr[Ri = b | ji = j∗, Si = 1] = Pr[Ri = b | Sij∗ = 1] = Pr[Ri = b | Pi = 1],

where the first equality follows from exogeneity, and the second equality follows from extremum-

agent monotonicity.
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As described further in section 5.3 and appendix B, the joint assumptions of exogeneity

and extremum-agent monotonicity yield testable implications about the relationship between

the composition of any given officer’s selected sample of arrestees and the composition of the

extremum officer’s selected sample. We implement an associated test of these implications

and cannot reject the joint null of exogeneity and extremum-agent monotonicity.13

Note that, while our use of variation in officer enforcement behavior for identification is

similar in spirit to the examiner instrumental variables design (e.g. Kling, 2006; Chyn et al.,

2024), our approach requires weaker assumptions, paralleling the discussion in section 2.4. In

particular, our montonicity assumption is weaker that the strict monotonicity of Imbens and

Angrist (1994).14 Moreover, we do not impose an exclusion assumption requiring that the

encountered officer only affects force through the arrest decision. As we discuss in appendix

B.5, the lack of an exclusion restriction is a feature of our estimand of interest, which differs

from the typical estimand in studies correcting for sample selection bias.

4.3 Estimation and inference

In practice, each officer’s individual sample of arrestees is too small to offer sufficient sta-

tistical precision. To estimate the racial composition of the officers with the greatest en-

forcement intensity, we will exploit information from all officers, estimate the relationship

between officers’ racial composition and their enforcement intensity, and estimate a fitted

value for the racial composition at the highest observed enforcement rate. Specifically, letting

Pr[Ri = b|Si = 1, Ñj] denote the share Black of arrestees among officers with average enforce-

ment activity Ñj, our estimate of π will be the value of this relationship at Ñj∗ = maxj∈J Ñj:

π = lim
Ñj→Ñj∗

Pr[Ri = b | Si = 1, Ñj]

Intuitively, we take the (selected) data on arrests and examine how the likelihood that an

arrestee is Black, Pr[Ri = b|Si = 1, ji = j], varies with the likelihood they were selected into

the data based on the enforcement intensity of the arresting officer(s). We then rely on that

13Appendix figure A-5, which depicts the motononic relationship between an officer’s overall and
crime-specific enforcement intensities, provides additional evidence in support of our extremum-
agent monotonicity assumption. Consistent with figure A-5, appendix table A-10 illustrates that
our estimate of π is unchanged when estimating within-crime type and using officers’ crime-specific
arrest propensities.

14Specifically, strict monotonicity implies extremum-agent monotonicity but not vice versa. As
an illustrative example that the converse is not true, extremum-agent monotonicity allows officers
with the same selection propensity to have different arrestee demographic characteristics, and this
is ruled out by strict monotonicity (Frandsen et al., 2023).
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variation to estimate Pr[Ri = b|Si = 1, ji = j] when Ñj = Ñj∗ . Per the discussion in section

4.2, the Black share of arrestees for officers with the highest probability of arrest identifies

the Black share of the target population.

We operationalize this idea with regressions of the form:

1[Ri = b] = f(Ñj) + φs + κdt + 󰂃i (6)

where Ñj is the enforcement intensity constructed by aggregating the officer-level estimates

(as described in section 4.1), and φs and κt are assignment and division-time fixed effects

as above.15 Note that this regression formulation, which adjusts for assignment by linearly

including the fixed effects as controls, imposes an additional auxiliary linearity assumption,

as discussed in Arnold et al. (2022). We probe the robustness of our results to relaxing this

assumption below in section 5.2.

As our baseline approach, we specify a very flexible functional form for (6). Specifically,

we adopt the semiparametric conditional binscatter approach of Cattaneo et al. (2024) and

compute the fixed effects-adjusted average Black share of arrestees for 100 quantile bins of Ñj,

using the estimate from the top percentile as our estimate of π. Results from specifications

specifying a linear functional form yield similar results, and we report estimates varying the

quantile which we deem to be “extreme” for both binscatter and linear approaches.

To avoid potential empirical issues arising from the reflection problem or correlated errors

in our first and second stages, we use a cross-partition approach when estimating π. Specifi-

cally, we randomly subset each officer’s shifts into two partitions and estimate an enforcement

intensity for each officer × partition using equation (5). We then use the enforcement inten-

sity estimates from the opposite partition to construct the arrest-level enforcement intensity

measure Ñj used in our second stage estimation.

With an estimate of π in-hand, it is straightforward to compute the selection-adjusted

disparity in force ∆̃ using equation (4). For statistical inference, we use a Bayesian boostrap

(Rubin, 1981), clustering at the assignment (sector × day of week × shift) level. The

randomized partitions used to construct our arrest-level enforcement intensity measure in

the second stage are redrawn in each bootstrap replication.

15In our baseline approach, we replace sectors with the narrower notion of beats in the assignment
fixed effects for this “second stage” regression. This choice provides modest precision gains but has
no impact on point estimates, as shown in appendix table A-4.
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5 Results

5.1 Baseline results

Figure 4 depicts the Black share of the selected sample (arrestees) as a function of en-

forcement intensity, adjusted for assignment and division-time fixed effects. This figure

corresponds exactly to the binscatter version of our second stage regression (6) using 100

quantile bins. The horizontal dashed line indicates the Black share in the selected sample,

πs = 0.5622.

We find a strikingly downward-sloping relationship between Pr[Ri = b|Si = 1] and

enforcement intensity, with a linear slope of β = −0.165 (0.028). The vertical height of

the maximimal bin – which represents the strata-adjusted Pr[Ri = b|Si = 1] for officers in

the top one percent of the enforcement intensity distribution – corresponds to our baseline

estimate of π = 0.494. In other words, we find that while Black civilians comprise 56 percent

of the selected sample arrestees, they comprise only about 49 percent of the target sample

of potential arrestees. The estimated difference between πs and π is statistically significant

at conventional levels.

In table 2, we report the selection-adjusted disparity in use of force (∆̃) implied by this

estimated over-selection of Black potential arrestees. In the selected sample, the disparity

in use of force is ∆s = 0.0055 (0.001), while our estimated selection-adjusted disparity

∆̃ = 0.011 (0.002). In other words, the degree of differential selection into the sample shown

in figure 4 implies a selection-adjusted force disparity which is twice as large as the disparity

in the selected sample.

Table 2 also reports results using a linear specification for estimating π, obtained by

computing the predicted value of the fitted line presented in figure 4 at the midpoint of

the maximal enforcement intensity bin. Unsurprisingly given the patterns in figure 4, these

results are nearly identical to those obtained using the bincsatter approach.

As discussed in section 2, we can compute a disparity in the likelihood of being arrested

among potential arrestees, Pr[Si = 1|Ri = b]− Pr[Si = 1|Ri = W ], and the unscaled, unse-

lected force disparity ∆ with an estimate of one additional parameter, the overall probability

of selection Pr[Si = 1]. Following from our assumption that the most enforcement-intensive

officers select potential arrestees with probability one, we obtain an estimate of the overall

probability of selection by dividing each officer’s estimated Ñj by the maximum Ñj and then

taking the shift-weighted mean of this rescaled p̃j.

Appendix table 3 reports the implied disparities in the target sample. Specifically, our

estimates indicate that Black potential arrestees are about 3 percentage points more likely

19



to be arrested, relative to a non-Black arrest rate of 9.6 percent. Among potential Black

and non-Black arrestees, the probability of force is 0.0036 and 0.0022, respectively. This

difference is statistically significant at conventional levels and implies that a Black potential

arrestee faces a 64 percent higher risk of force than a non-Black potential arrestee.

5.2 Robustness

In appendix table A-4, we explore the sensitivity of our baseline binscatter estimates to our

specification choices. In panel (a), we report results when using alternative measures of

enforcement intensity in the first stage regression (5). In panel (b), we report results using

alternative methods for aggregating the officer-level enforcement intensity measures into

an arrest-level measure, including taking the minimum and maximum among the arresting

officers and randomly drawing one officer when there are multiple arresting officers. In panel

(c), we consider alternative fixed effects, including using beats instead of sectors in the first

stage where applicable. This table illustrates clearly that none of these choices have any

bearing on our empirical conclusions.

We also consider the importance of estimation error in officer enforcement intensity for

our findings. Note that estimation error plays two conflicting roles in our empirical approach.

On one hand, measurement error in enforcement intensity will tend to attenuate relationship

depicted in figure 4, leading us to overestimate π (understating the extent of selection bias).

On the other hand, estimation error generates an over-dispersed distribution of enforcement

intensity, potentially leading us to overestimate extreme quantiles in this distribution and

thereby underestimate π (overstating the extent of selection bias).

To assess the importance of estimation error for our conclusions, we adopt the following

two-step procedure. First, we use a split-sample IV (SSIV) approach, where we estimate

officer enforcement intensity in two random partitions of the data and instrument an offi-

cer’s estimate in one partition with their estimate from the opposite partition, to obtain an

estimate of the linear slope in the relationship between Pr[Ri = b|Si = 1] and enforcement

intensity (i.e., the relationship depicted in figure 4) which is corrected for attenuation bias.

We then construct bounds on π by extrapolating this unattenuated slope estimate to

various quantiles in the distribution of enforcement intensity. Appendix table A-5 reports

the SSIV estimates and table A-6 reports the associated bounds.16 Our most conservative

bound, which extrapolates to the 99th percentile of the empirical Bayes shrunken distribution

16As reported in appendix table A-5, the measurement error corrected slope we obtain using the
SSIV approach is only about five percent larger (more negative) than the slope we report in figure
4, suggesting that enforcement intensity is quite well-measured.
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of enforcement intensity (which should be strictly less than the true maximum enforcement

intensity), yields π = 0.537 and an associated ∆̃ = 0.0077. This estimate is comparable to

the lower 95 percent confidence bound of our baseline estimate and is still about 40 percent

larger than the selected disparity. On the other hand, using the unattenuated slope but

extrapolating to extreme quantiles in the unshrunken distribution of enforcement intensity

(which should be strictly greater than the true maximum) yields π = 0.41 and an associated

∆̃ = 0.016, a disparity about three times larger than that in the selected sample.

Along similar lines, figure 5 explores how our conclusions would change when using

alternative quantiles to define the maximally-enforcing officers. Panel (a) reports estimated

π’s with 95 percent confidence bands for both binscatter and linear specifications when using

the top q percent of the enforcement distribution to estimate π, where q is on the horizontal

axis. Relative to our baseline estimate (π = 0.4929), estimated π’s are generally slightly

larger (i.e., closer to πs = 0.562) when using less extreme quantiles and and slightly smaller

(i.e, further from πs) when using higher quantiles. Note that this pattern is expected given

the linear relationship depicted in figure 4. Panel (a) of figure 5 also reports the estimated

π when using data-driven optimal bin selection of Cattaneo et al. (2024) to select the bins

(π = 0.5048), which is very similar to our baseline estimate (π = 0.4938).

The second panel of figure 5 reports the corresponding selection-adjusted force disparities

∆̃ when using the quantile-specific estimated π. By construction, the pattern in panel (b) is

inverse of the pattern in panel (a); as the estimated π becomes further from πs, the selection-

adjusted ∆̃ grows relative to the selected sample ∆s. When using the most conservative π

from the first panel, we obtain an adjusted force disparity ∆̃ = 0.0076, about forty percent

larger than the selected sample disparity (∆s = 0.0055). When using the least conservative

estimate (π = 0.451) which linearly extrapolates to the 99.99th percentile in the enforcement

intensity distribution, the estimated adjusted force disparity is ∆̃ = 0.0139, about 2.5 times

as large as the selected disparity. Note that, in all cases, the estimated difference ∆̃−∆s is

statistically significant at conventional levels.

Another concern for our approach is the worry that officers in different parts of the

enforcement intensity distribution are simply patrolling different areas, which would violate

an auxiliary linearity assumption implicit in our second stage estimation (Arnold et al.,

2022). To address this concern, we estimate π using an alternative, within-locations approach

based on the procedures in Feigenberg and Miller (2022) and Goncalves and Mello (2023).

Specifically, for varying notions of location, we first estimate officer-by-location enforcement

intensity. Then, using these location-specific enforcement intensity measures, we conduct

location-specific extrapolations (i.e., estimate the second stage separately by location) and
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construct estimates of π relying only on this within-location variation by aggregating up the

location-specific estimates, weighting by location shares in the selected sample.

We depict the results of this approach and report the within-location estimated π’s in

figure 6. The slope in the relationship between Pr[Ri = b|Si = 1] and enforcement intensity

is strikingly similar when using only within-city, within-division, and within-sector variation.

Accordingly, we obtain very similar estimates of π using these alternative approaches. Ac-

companying figure 6, appendix figure A-6 shows the city-specific versions of figure 4. While

Chicago and Seattle differ meaningfully both in terms of the Black share of arrestees and

the distribution of enforcement intensity, we find a strikingly similar relationship between

enforcement intensity and the race composition of arrestees in both settings. We cannot

statistically reject that the slope in this relationship is equal in the two cities.

An alternative concern we note is that some arrests involving use of force may initiate

with civilian choices to confront officers rather than officer choices to arrest civilians. In

appendix table A-7, we report estimates when dropping arrests for officer assault from our

analysis sample, which are nearly identical to our baseline estimates.

Finally, we acknowledge worries about the measurement of police use of force, which are

pervasive in the literature on this topic. Recall that measurement of use of force is not an

input into our primary estimation exercise. Rather, our approach takes the race-specific

average force rates in the selected sample and adjusts the disparity therein for the estimated

degree of differential selection into the data by race. Hence, our approach can easily be

adapted to report adjusted disparities under various assumptions about the mismeasurement

of police use of force. To speak more directly to this question, we report estimates for only

use of force which results in civilian injury, more severe force events that we expect are

less subject to misreporting concerns, in appendix table A-8. In the selected sample, non-

Black civilians are injured by the police in 0.58 percent of arrests and Black arrestees are

0.07 percentage points more likely to be injured. The selection-corrected disparity is 0.21

percentage points, or about three times larger than the selected disparity.

5.3 Testing assumptions

As introduced in section 4.2, our approach for identifying the race composition of potential

arrestees using an extremum officer j∗ requires a monotonicity assumption stating that, for

all officers j, Sij = 1 implies Sij∗ = 1. Another way to phrase this assumption is that the

set of arrestees for each officer is a subset of the set of arrestees for the extremum officer.

Combined with our assumption of exogeneity, this notion of monotonicity implies testable

bounds on the composition of arrestees for each officer in the data. The underlying logic
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of these bounds is that each officer’s arrest rate imposes limits on how much her sample

composition can differ from that of the extremum officer. For example, if extremum-agent

monotonicity holds, an officer who arrests 99 percent as often as the extremum officer must

have a share Black among her arrestees which lies between π × 0.99 and π × 0.99 + 0.01,

where the lower (upper) bound assumes that the “missing” arrestees are all Black (non-

Black) civilians. Formally, defining πj to be the fixed-effects adjusted estimate of officer j’s

Black share of arrestees and Ñj to be their enforcement intensity, the joint assumptions of

exogeneity and extremum-agent monotonicity imply:

πjÑj ≤ πÑj∗ ≤ πjÑj + (Ñj∗ − Ñj), ∀j ∈ J

Hence, we can test the combined assumptions of exogeneity and extremum-agent mono-

tonicity by jointly testing whether these inequalities hold for all officers in the sample. We

implement this as a joint test of moment inequalities using the inference procedure developed

in Romano et al. (2014) and Bai et al. (2022), as described further in appendix B. Table

A-9 reports the results of this test separately for each arrestee characteristic as well as the

results of a joint test for all arrestee observables. We cannot reject the null hypothesis that

the above inequalities hold when focusing only on racial composition (p = 0.24) or when

jointly examining all arrestee characteristics (p = 0.12), suggesting that our assumptions are

likely to hold in our setting.17

As an additional test of the validity of our extremum-agent monotonicity assumption,

we recompute π by estimating officers’ race-specific enforcement intensity Ñ r
j , taking the

exremum officers’ values Ñ r
j∗ , and computing π̂ = Ñ b

j∗/(Ñ
b
j∗ + Ñw

j∗) = 0.512. The similarity

of this estimate with our baseline estimate suggests that the extremum officer captures the

most extreme officers in terms of arrests of both racial groups.

5.4 Alternative populations of interest

Our analysis focuses on the population at risk of arrest as the primary target population

of interest. However, we also note that not all use of force events occur during an arrest

and that racial disparities in the risk of facing police use of force among alternative target

populations may similary be of interest.

17In appendix B, we also discuss alternatives to our monotonicity assumption. In particular,
without extremum-officer monotonicity, we propose an alternative 󰂃-monotonicity assumption which
states intuitively that a hypothetical officer satisfying extremum-officer monotonicity would need
to select at a rate 󰂃 higher than the most enforcing officer in the data. This 󰂃-monotonicity
assumption suggests extrapolation (e.g., Arnold et al. 2022) or bounding approaches for estimating
the composition of the unselected sample of interest.
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It is straightforward to compute our selection-adjusted ∆̃ using population benchmarks.

Based on data from the 2010 Census, the combined population of Chicago and Seattle is

28 percent Black (as reported in figure 2). For this notion of the target population (i.e.,

letting π = 0.28), we estimate ∆̃ = 0.022, about twice as large as our estimate based on the

sample of potential arrestees and four times lager than the disparity in the selected sample.

We can also compute the “beat-weighted” share Black of city residents, where we reweight

city neighborhoods to match their relative frequencies in the arrest data. As shown in figure

2, this gives π = 0.428 and implies ∆̃ = 0.015, about 35 percent larger than our baseline

estimate using potential arrestees.

An alternative target sample of interest is set of individuals who are at risk of any

police contact, rather than those at risk of an arrest, which in principle would represent

the full population of individuals at risk of force. If our data included all police-civilian

encounters, we could replicate our econometric procedure leveraging variation across officers

in the propensity for any civilian contact, instead of the propensity to make arrests, to

recover the racial composition of this alternative sample of interest. In practice, however,

the universe of police-civilian interactions is never captured in administrative datasets.

There are two ways we could speak to this question. First, we note that the most compre-

hensive national dataset on police interactions, the Police-Public Contact Survey, suggests

that racial composition of individuals with any police contact or any police-initiated contact

is quite similar to the racial composition of the overall population, as depicted in figure

1. Hence, population benchmarks may be reasonably informative about the composition

of those at risk of police contact, suggesting that the unselected disparity for potential ar-

restees that we recover could be a conservative estimate of the disparity among those with

the potential for any police contact.

Alternatively, we could note that arrests are a form of police-civilian contact and, there-

fore, that the set of potential arrestees is a strict subset of the population at risk of any

police contact. Hence, one could construct bounds on the racial composition of the sam-

ple at risk of contact by taking our estimated π and then making assumptions about the

fraction of interactions resulting in arrest and the race composition of the “missing” interac-

tions. Simple “best” and “worst” case bounds are likely to be uninformative because arrests

comprise a small subset of all police-civilian interactions, but bounds could potentially be

tightened by drawing on additional data sources or by making additional assumptions. For

example, it may be reasonable to assume that the over-selection of Black civilians is weakly

more pronounced for lower-level level encounters, which are subject to less downstream over-

sight, than for arrests. Such an analysis is beyond the scope of our paper but represents a
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potentially interesting avenue for future research.

A potential critique of our notion of the target sample might be that the most-enforcing

officers are “over-arresting,” or making many illegitimate arrests which should not be in-

cluded in the target sample. This critique may stem from a researcher’s interest in defining

the target sample in more restrictive terms, e.g., among a sample of externally-validated

potential arrests, in place of our focus on the full set of potential arrest interactions. Such

a concern would imply that the target sample Pi is “too large,” and we can place bounds

on the racial composition of any subset of the target sample we identify. Letting πρ denote

the Black share of a subsample of Pi, where ρ is the probability of being in this subsample

conditional on being in Pi, we know that πρ ∈ [π
ρ
− 1−ρ

ρ
, π

ρ
]. For example, if ρ = 0.9, so

that the desired sample is 10 percent smaller than the set of potential arrestees, the bounds

are [0.438, 0.549]. Since this interval is strictly below the Black share in the selected sample

of arrestees, our central conclusion that the naive disparity in the selected sample is biased

downwards would not change for any target sample definition that is at least 90 percent as

large as our target sample of all potential arrestees.

A strength of our target sample is that it corresponds to those actually at risk of force,

given the arresting behavior of the observed set of officers. However, also worth considering

is how our target sample would compare to a normative notion of a population of inter-

est. The existing literature has taken an implicitly normative stance on the choice of target

population; as the problem is stated in Knox et al. (2020), “if police racially discriminate

when choosing whom to investigate, analyses using administrative records to estimate dis-

crimination in police behavior are statistically biased.” Given the word discrimination, the

implication here is that the “correct” target population is one where, after accounting for

other demographic and incident characteristics, race is not a factor in determining entry into

the target population.

We provide some evidence indicating that our target population of potential arrestees

satisfies this normative criterion in appendix table A-12. Specifically, this table illustrates the

racial differences in the characteristics of individuals in the selected sample of arrestees (Pi =

1, Si = 1), individuals in the target sample of potential arrestees (Pi = 1), and individuals

who are in the target sample but not arrested (Pi = 1, Si = 0). As illustrated in the first

panel, we find significant differences across race among those who are arrested. The second

panel illustrates that these differences are dramatically less pronounced when examining

the full target population, although we can still reject the null that all characteristics are

equal across racial groups at the 10 percent level. Among potential arrestees who are not

arrested, however, we fail to reject the null that non-race characteristics are equal across

25



racial groups. The not-selected individuals (Pi = 1, Si = 0) are those who are not arrested

by their encountered officer but would be arrested by the most-enforcing officers. They can

thus be seen as approximating the population who would only be arrested by an officer

who is marginally more-enforcing than the current extremum officer, a population that is

therefore “at the margin” of entering the target sample. Hence, the similarity of non-race

characteristics across racial groups among this not-selected sample supports the view that,

conditional on other characteristics, race is not a factor in determining entry into the target

population.

6 Discussion

6.1 Disparities versus discrimination

As noted in section 2, our analysis delivers an unselected racial disparity which does not

necessarily correspond to a standard notion of causal discrimination, since force outcomes

may be due to non-race characteristics that are correlated with race. Indeed, a large literature

across various settings has documented that race disparities may be partly explained by

differences in non-race characteristics.18 In other words, our estimated∆ does not correspond

to a racial disparity in treatment which is conditional on all other characteristics.

To conceptualize the relationship between ∆ and other notions of discrimination, sup-

pose that all non-race characteristics considered by officers can be represented by a single

variable θi which takes discrete values. The unconditional disparity can be expressed with

the standard Kitagawa-Oaxaca-Blinder decomposition:

∆ =
󰁛

θ

󰀅
Db,θ −Dw,θ

󰀆
Pr[θi = θ] +

󰁛

θ

󰀅
θb − θw

󰀆
D̃θ, (7)

where Dr,θ = E[Di|Ri = r, θi = θ], θr,θ = Pr[θi = θ|Ri = r], and D̃θ = πDw,θ + (1 −
π)Db,θ. The first term captures racial differences in how individuals with the same other

characteristics θi are treated, and it corresponds closely to the idea of discrimination targeted

in much of the literature. The second term captures racial differences in the composition of

other characteristics and reflects the idea that differences in treatment may arise from, for

example, differences in offense type.

The above decomposition also highlights that, if the race-specific distributions of θ are

equal in the target sample (i.e. if, ∀θ, θb = θw), then our estimated ∆ corresponds to

18For a selective list, see Neal and Johnson (1996) on earnings, Fryer Jr (2011) and List and
Uchida (2025) on academic achievement, and Jordan et al. (2024) on criminal justice involvement.
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discrimination. While we do not directly observe θi, we can partially test this condition

by examining racial differences in observable characteristics X among the target sample.

Specifically, we can calculate the race-specific average characteristics using Bayes’ Rule:

Pr[X = x|R = r] = Pr[Ri = r|Xi = x]Pr[Xi = x]/Pr[Ri = r]. Our baseline estimation

approach can identify Pr[Ri = r] and Pr[Xi = x]. To identify the conditional race shares

Pr[R = r|X = xi], we repeat our approach within discrete values of X.

Table 4 explores covariate differences across racial groups in both the selected and target

samples. For simplicity, we report race-specific averages of a covariate index capturing an

individual’s predicted likelihood of facing force.19 In the selected sample, Black arrestees are

about 0.1 percentage points (four percent) more likely to face force based on their non-race

covariates, with this disparity statistically significant at conventional levels. However, in

the target sample of potential arrestees, this gap is an order of magnitude smaller and no

longer statistically distinguishable from zero. In other words, we find evidence of meaningful

differences in non-race characteristics among arrestees, but not among potential arrestees.

Table 4 also reports results from joint tests of the null hypothesis that covariates are

equal are equal across racial groups in the selected and target samples. Aligning with the

conclusions when examining the covariate index, p-values from these tests are consistently

below 0.001 in the selected sample, suggesting statistically relevant differences in covariates

across racial groups. In the target sample, on the other hand, we cannot reject that the

distribution of offense types is equal across racial groups (p = 0.38) and can only reject the

null that all covariates are equal at the ten percent level (p = 0.06).

To provide a more direct assessment of the relative importance of discrimination versus

differences in non-race characteristics in driving our estimated disparity, we perform our

selection-correction exercise within observable characteristics, which we describe in detail

in appendix B. We construct a discrete variable Xi that divides the sample into sixteen

cells based on arrestee gender, whether they are younger than 35, and four offense categories

(violent, property, drug, other). Within each value of Xi, we perform our baseline estimation

approach to identify Pr[Ri = b|Xi = x] and use it to estimate ∆x = Db,x − Dw,x. We

then decompose the unconditional force gap into components that are within and across

19This covariate index is constructed by regressing an indicator for use of force on all non-
race covariates using only non-Black individuals and then computing predicted values. As in
the construction of our enforcement intensity instrument, we use randomized cross-partitions to
construct predicted force (i.e., we estimate this regression separately in two partitions and construct
predicted values using the regression coefficients from the opposite partition). Race-specific averages
of all covariates for the selected and target samples are reported in appendix table A-12.
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demographic cells:

∆̃ =
󰁛

x

∆x

E[Si|Ri = b]
Pr[Xi = x]

󰁿 󰁾󰁽 󰂀
Within-X racial force gap

+
󰁛

x

[Xb −Xw]

E[Si|Ri = b]
D̃x

󰁿 󰁾󰁽 󰂀
Racial differences

in X-shares

,

where Xr = Pr[X = x|Ri = r] and D̃x = (1 − π)E[Di|Ri = b,Xi = x] + πE[Di|Ri =

w,Xi = x]. Averaging across demographic cells, and weighting by the size of the cells in

the target sample, Pr[Xi = x], we calculate an average within-X force disparity of 0.0074

(0.002), as shown in table B-1. This figure is 67 percent of our unconditional force disparity

(∆̃), providing further evidence that the majority of the force gap cannot be explained by

observable characteristics of the arrestee or the offense. This fact suggests an important role

for officer discrimination in driving the racial force gap in the unselected sample.

It is well known that the KOB decomposition is not unique, and different decompositions

correspond to different causal statements. As we discuss in appendix B, under the assumption

of independence of race conditional on observables X, the above within-X force gap reflects

the causal effect of race on the probability of force for all individuals in the target sample.

An alternative estimand of interest is the causal effect of race on force for individuals in the

selected sample of arrestees. We calculate the conditional force gaps for this group as well,

and we again find similar magnitudes for the causal effect of race on force likelihood.

6.2 Revisiting Fryer Jr (2019)

A natural question following from our analysis is to what extent the differential selection

that we document affects the highly-publicized conclusions in Fryer Jr (2019). This study

examines racial differences in police use of force across a range of data sources and force

outcomes and presents regression results which account for a rich set of controls for civilian

and encounter characteristics. While Fryer Jr’s analyses finds large racial disparities for

less severe forms of force, he found no statistical difference in levels of severe or fatal force,

and point estimates for these outcomes actually indicated greater force rates against white

civilians.

As in most of the literature focused on policing, a limitation of data sources used in

Fryer Jr (2019) is that they originate from incidents involving police discretion, such as

pedestrian stops or arrests. This issue has attracted a large follow-up literature debating

the possible importance of sample selection bias for the study’s conclusions (Knox et al.,

2020; Durlauf and Heckman, 2020; Fryer Jr, 2020). While we cannot directly replicate our

procedure for estimating the race composition of the unselected sample using Fryer Jr’s
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data, we can ask how the study’s conclusions would change assuming a comparable rate of

differential selection by race in his data and ours.

First, we note that the target estimand in Fryer Jr (2019) corresponds closely to the

within-X racial disparity measure from the previous section. Combining the notation from

sections 2 and 6.1, we can think of his estimand of interest as ∆Fryer =
󰁓

x ωx[D
b,x−Dw,x], for

some set of ωx > 0, where X represents a rich set of covariate controls. While this estimand

represents within-X force disparities for the unselected sample, the data available are for a

selected sample of observations, and thus Fryer Jr (2019) estimates a series of regressions

that identify some form of

∆Fryer
s =

󰁛

x

ω̃x[D
b,x
s −Dw,x

s ],

where Dr,x
s = E[Di|Ri = r,Xi = x, Si = 1] and

󰁓
x ω̃x = 1. Following the logic of section 2

and applying a within-X version of equation (2), we can decompose the estimate from the

selected sample to show how it differs from the target estimand:

∆Fryer
s =

󰁛

x

ω̃x
∆x

Sb,x

󰁿 󰁾󰁽 󰂀
Unselected

force disparity

+
󰁛

x

󰀅 πx

1− πx
· 1− πx

s

πx
s

− 1
󰀆
ω̃xD

w,x
s

󰁿 󰁾󰁽 󰂀
Sample selection bias

where Sr,x = E[Si|Ri = r,Xi = x], πx = Pr[Ri = b|Xi = x], and πx
s = Pr[Ri = b|Xi =

x, Si = 1]. This decomposition shows that, if there is no differential selection by race

conditional on X (i.e., πx = πx
s for all x), ∆Fryer

s captures a weighted average of within-X

(scaled) force disparities, ∆x/S
b,x.

Fryer Jr (2019) reports various estimates of ∆Fryer
s for different samples and force out-

comes, as well as averages of race specific force. Naturally, the study does not report Dw,x
s

for each value of X. Therefore, we are not able to directly estimate the “sample selection

bias” term above. However, we can resolve this issue by assuming that
󰀅

πx

1−πx · 1−πx
s

πx
s

−1
󰀆
is the

same across all values of x, denoting this with
󰀅

π·

1−π· · 1−π·
s

π·
s

− 1
󰀆
.20 Making this simplification

and rearranging terms, we arrive at an estimable expression for the average force disparity:

󰁛

x

ω̃x
∆x

Sb,x
= ∆Fryer

s +
󰀅
1− π·

1− π· ·
1− π·

s

π·
s

󰀆
·
󰁛

x

ω̃xD
w,x
s . (8)

20To validate this assumption, we estimate this object separately for 16 groups at the level of
gender × 1[age≥35] × crime type and test the null hypothesis that πx

1−πx
· 1−πx

s
πx
s

is equal across these

groups. We cannot reject that this object is equal across groups (p = 0.69).
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The first term on the right-hand side represents Fryer’s estimates of race on force in the

selected sample. For the second term, we take
󰁓

x ω̃xD
w,x
s from his reported summary

statistics on use of force against white civilians in the selected sample and then construct

the ratio of unselected and selected race shares directly from our analysis. Implicit in this

calculation is the assumption of proportionally similar differential selection by race within

observable characteristics in his setting and ours.

We report the results from this exercise in table 5. Each row presents a different data

source and outcome examined by Fryer Jr (2019). The first column presents the study’s re-

ported average force outcome for white individuals in the (selected) sample. Columns (2) and

(4) present the study’s measures of racial force gaps without any controls and with the full

set of available controls, respectively, and columns (3) and (5) present our selection-corrected

estimates of the coefficients in columns (2) and (4). The first two rows in columns (2) and (4)

show positive coefficients for the Black-white gap in force from the NYC Stop-Question-Frisk

data and the Police Public Contact Survey (PPCS). Our correction increases the coefficients

in all cases. Because average force rates are higher in the second row (column 1), selection

adjustments are larger for the PPCS analysis; we find that the selection-corrected force gaps

in the PPCS are about 40 percent larger than suggested by the selected sample.

The bottom three rows present coefficients from Fryer Jr’s analysis of police shootings

in Houston. Each row corresponds to a different choice of analysis sample. Note that all

coefficients are negative, indicating that Black individuals in the sample are less likely to be

shot by the police. While our selection correction increase all coefficients, in only one of six

cases is the adjusted estimate positive (and, in this case, the magnitude is quite small). Ac-

companying table 5, appendix figure A-7 repeats our figure 2 but depicts the selected sample

moments from the third row of table 5, corresponding to Fryer Jr’s analysis of shooting in

Houston which condition on features of the interaction drawn from police narratives. Cor-

recting for sample selection bias shifts the estimate leftward along the selection adjustment

curve sufficiently far such that the estimated disparity is approximately zero. The conclusion

from this exercise is that, while our selection correction is sufficiently important to erode (to

varying degrees) the presence of “reverse discrimination” observed among police shootings

in Fryer Jr’s analysis, it does not reverse his conclusions and result in meaningfully positive

Black-white disparities for this margin of force.

6.3 Implications for other stages of the criminal justice system

While our analysis focuses on computing the racial disparity in police of force which is

purged of selection bias arising from racial disparities in the likelihood of being selected into
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the data, worth noting is the point that these conclusions about differential selection into

arrests have implications for our understanding of the observed racial disparities at various

downstream stages of the criminal justice system.

As discussed in section 5.1, our findings suggest that Black potential arrestees are about

30 percent more likely to be arrested than non-Black potential arrestees. Our analysis in

sections 6.1 and 6.2 show the similarity of non-race characteristics among Black and non-

Black potential arrestees and suggest differential rates of selection within covariates which

are similar to our baseline estimates. Collectively, these findings support the interpretation

that differential arrest rates by race are in part determined by race discrimination by officers.

As an example to illustrate the implications of differential arrest rates by race for under-

standing disparities in other downstream criminal justice outcomes, consider the summary

statistics reported in Dobbie et al. (2018)’s analysis of bail hearings. In their pooled sample

based on data from Philadelphia and Miami, 58.3 percent of arrestees are Black and Black

arrestees are about 5 percentage points more likely to be detained pretrial. Assuming the

same proportional degree of differential selection into arrests in their setting and ours would

imply a target sample π = 0.512 and a selection-corrected disparity in the likelihood of pre-

trial detention of ∆̃ = 0.175, or about three times larger than the disparity in the selected

sample of arrestees.

Note that this exercise re-highlights two important features of our analysis: (i) our frame-

work applies more generally to outcomes which are conditional on discretionary selection; (ii)

our selection-corrected disparity can be calculated easily using information typically reported

in summary statistics tables or popular press articles under various assumptions about the

extent of differential selection into the data.

7 Conclusion

Estimating and understanding racial disparities in the criminal justice system is complicated

by the fact that criminal justice agents have broad discretion at various stages of the system.

Discretion exercised at one stage of the system influences which individuals appear in datasets

covering downstream stages, potentially introducing sample selection bias which can distort

measures of realized racial disparities.

In this paper, we study racial disparities in police use of force against civilian arrestees,

taking into account the possibility of selection bias arising from racial disparities at the arrest

stage. We first develop a conceptual framework to illustrate that a racial disparity which is

purged of selection bias can be calculated from moments in the selected data and an estimate

of the racial composition of the potentially-selected sample of interest.
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We then propose an approach for estimating this racial composition which leverages

variation across officers in their propensity to make arrests. Given an exogeneity assumption

and a monotonicity-like assumption requiring the existence of some officer who makes all

arrests that would be made by other officers, we show that the Black share of arrests made

by the most-enforcing officers corresponds to the Black share of the population at risk of

arrest, and therefore the population at risk at facing force during an arrest.

Implementing our approach using data on arrests and use of force from the Chicago and

Seattle police departments, we find strong evidence of differential selection into the arrests

data by race. While Black civilians comprise 56 percent of arrestees, we estimate that they

comprise about 49 percent of potential arrestees. Accordingly, we find that after adjusting

for selection bias, Black civilians are 48 percent more likely to face force than non-Black

civilians, a disparity about twice as large as the naive difference computed in the selected

data. We also find that about 70 percent of this disparity in within non-race observable

characteristics, suggesting that racial discrimination by officers could play a meaningful role

in driving the disparities that we document.

Our finding of significant racial disparities in arrest rates among potential arrestees has

important implications for the interpretation and understanding of racial disparities in the

criminal justice system more broadly. Given the unavailability of an observable control

group, much of the prior literature has ignored the potential for differential selection at the

earliest entry points in this system, such as arrests or stops made by police officers. Future

work should continue to take seriously the ways in which initial choices by police officers can

affect the population observed in data at later stages of the criminal justice system.
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Figure 1: Racial disparities at stages of criminal justice contact
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N otes: This figure reports the Black share of various populations facing criminal justice contact.
Information on police-initiated contacts and use of force victims are from the BJS’s Police-Public
Contact Survey. Information on arrests are from the FBI Uniform Crime Reporting Data Program.
information on Jail and Prison populations are from the BJS.
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Table 1: Racial disparities in use of force among arrestees

(1) (2) (3) (4)
Force Force Force Force

Race = Black 0.00600 0.00546 0.00580 0.00471
(0.000859) (0.00107) (0.00108) (0.00108)

Non-Black Mean .023 .023 .023 .023
FE No Yes Yes Yes
Demographics No No Yes Yes
Crime Type No No No Yes
Arrests 134361 134361 134361 134361

N otes: This table reports the racial disparities in police use of force in the selected sample of
arrestees. Specifically, we regress an indicator for whether force was used during an arrest on an
indicator for whether the arrestee is Black. Column 1 reports the raw disparity and column 2 adds
beat × weekend × shift fixed effects as well as division × year × month fixed effects. Column 3
adds additional demographic controls for age and gender. Column 4 adds fixed effects for crime
type (violent, property, drug, and other). Standard errors clustered at the assignment level in
parentheses. The disparity in column 2, which conditions on assignment and time effects but not
other characteristics, is the disparity we focus on adjusting for differential sample selection.
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Figure 2: Sample selection adjustment curve
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N otes: This figure illustrates the selection-adjusted disparity in use of force (≡ ∆̃) as a function
of the racial composition of the target sample using equation 4 and substituting in the relevant
moments from the selected sample. Solid blue dot denotes the moments in the selected sample.
As relevant benchmarks for the composition of the target sample, we report the Black share of the
overall population with the purple dashed line and the beat-weighted Black population share with
the orange dashed line, computed by calculating the Black population share in each beat and then
taking a weighted average, weighting by each beat’s representation in the arrests data.
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Figure 3: Arrestee crime type by enforcement intensity

Felony: β = -1.2559 (0.046)
Violent: β = -0.8361 (0.031)
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N otes: This figure illustrates the relationship between the probability that an arrest is for a felony
crime (blue dots) or violent crime (orange squares) crime and arrest-level enforcement intensity,
computed as described in section 4.1. The figure displays conditional binscatters with 100 quan-
tiles bins, adjusting for assignment and division-time fixed effects and reports coefficients and
bootstrapped standard errors from the corresponding linear regressions.
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Figure 4: Enforcement intensity and the racial composition of arrests
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N otes: This figure illustrates the relationship between the probability that an arrestee is Black
and arrest-level enforcement intensity, computed as described in section 4.1. The figure displays
conditional binscatters with 100 quantiles bins, adjusting for assignment and division-time fixed
effects and reports coefficients and bootstrapped standard errors from the corresponding linear
regressions. Dashed horizontal line denotes the share Black in the selected sample, πs = 0.5622.
The vertical height of the rightmost bin corresponds to our baseline estimate of π = 0.494. Figure
also reports the estimated difference between πs and π and the associated bootstrapped standard
error.
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Table 2: Baseline estimates

Racial Composition Disparity in Force

(1) (2) (3) (4) (5) (6)

πs π Difference ∆s ∆̃ Difference

Binscatter 0.5622 0.4938 0.0684 0.0055 0.0111 -0.0056
(0.0429) (0.0189) (0.0017) (0.0013)

Linear 0.5622 0.4952 0.0669 0.0055 0.0110 -0.0055
(0.0429) (0.0125) (0.0013) (0.0008)

N otes: This table reports our baseline estimates of the Black share of the target sample of po-
tential arrestees (π) and the associated selection-adjusted force disparities ∆̃, computing from the
estimated π using equation 4. In both cases, we also report the difference between the unselected
and unselected parameters. Bootstrapped standard errors clustered at the assignment level are
reported in parentheses. The first row reports estimates from our baseline binscatter approach,
while the second row reports estimates from a linear specification.
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Table 3: Unscaled estimates for target sample

Target sample estimates:

(1) (2) (3)
Black Non-Black Difference

Pr(Arrest) 0.1266 0.0962 0.0304
(0.0058) (0.0073) (0.0078)

Pr(Force) 0.0036 0.0022 0.0014
(0.0003) (0.0003) (0.0002)

N otes: This table reports estimated rates of selection and force for the target sample (i.e., disparities
which are not rescaled by baseline selection rates). The bottom right number (0.0014) corresponds
to the ∆ (rather than ∆̃) described in section 2.
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Figure 5: Sensitivity of estimates to extrapolation quantile

(a) Estimated π by extrapolation quantile
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(b) Range of estimated ∆̃
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N otes: Panel (a) reports estimates of π and associated 95 percent confidence bands using specifi-
cations which vary the method for obtaining the estimate (binscatter and linear) and the quantile
used to define the maximally enforcing officers (the horizontal axis). Panel (b) reports the selection-
corrected force disparity estimates (∆̃) associated with each estimated π. Our baseline estimates,
shown in figure 4, are those based on a binscatter using the top one percent of the enforcement
intensity distribution as the definition of maximal. Each figure also reports the estimate when
using the Cattaneo et al. (2024) data-driven optimal bandwidth selection procedure to construct
the binscatter.
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Figure 6: Within-location estimates of π
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N otes: This figure illustrates the relationship between the probability that an arrestee is Black
and arrest-level enforcement intensity. The smallest gray dots denote estimates from our baseline
specification (same as depicted in figure 4). Blue circles, orange squares, and red diamonds report
estimates from our within-location approach for different notions of location, obtained by computing
location-specific enforcement intensity measures, separately estimating the relationship between
enforcement intensity and the probability that an arrestee is Black for each location, and then
aggregating up the location-specific estimates, weighting by location shares in the arrest data. The
figure reports the associated within-location estimates of π and associated standard errors.
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Table 4: Covariates by race in selected and target samples

(1) (2) (3)
Black Non-Black Difference

Panel A: Selected sample (Pi = 1, Si = 1)

Covariate index 0.0245 0.0232 0.0013
(Predicted force) (0.0022) (0.0020) (0.0004)

Joint tests of differences:
Demographics p < 0.01
Crime type p < 0.01
All covariates p < 0.01

Panel B: Target sample (Pi = 1)

Covariate index 0.0190 0.0189 0.0001
(Predicted force) (0.0018) (0.0017) (0.0005)

Joint tests of differences:
Demographics p < 0.01
Crime type p = 0.38
All covariates p = 0.06

N otes: This table reports the race-specific distribution of a covariate index in the selected and
target samples using the approach explained in section 6.1, where the index is constructed from a
regression of force on non-race characteristics using only the non-Black arrestees. Panels (a) and (b)
report information for the selected sample of arrestees and the target sample of potential arrestees,
respectively. In each panel, we report the race-specific average covariate index (as discussed in
section 6.1) as well as the Black versus non-Black difference. We also report p-values from joint
tests of the null hypothesis that groups of covariates are equal across race. Covariates included
in “demographics” are gender and age, parameterized as indicators for age 0-24, age 25-34, age
35-44, and age 45+, while covariates included in “crime type” are indicators for violent, property,
drug, or other crime. Corresponding averages for all covariates are reported in appendix table
A-12. Generically, to calculate the covariate distributions in the target sample, we first conduct
our baseline estimation approach with I[Xi = x] on the left-hand side to identify Pr[Xi = x] for
all demographic cells. Then, we restrict the sample to Xi = x and conduct our approach with
Ri = b on the left-hand side to identify Pr[Ri = b|Xi = x]. For the covariate index specifically, we
execute this procedure for quintile bins of predicted force and compute implied values based on the
bin-specific means.
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Table 5: Implications of estimated selection patterns for Fryer Jr (2019) estimates

Overall Within-X

(1) (2) (3) (4) (5)

E(Di|Ri = w, Si = 1) ∆s ∆̃ ∆s ∆̃

NYC SQF 0.0080 0.0187 0.0206 0.0136 0.0141
(Any Force)

Police-Public Contact Survey 0.1530 0.0817 0.1185 0.0265 0.0373
(Any Force)

Houston: Narratives 0.4550 -0.1083 0.0011 -0.0346 -0.0023
(Shooting)

Houston: Taser 0.1850 -0.0679 -0.0234 -0.0572 -0.0440
(Shooting)

Houston: Arrests 0.1500 -0.0501 -0.0140 -0.0324 -0.0218
(Shooting)

N otes: This table reports estimates from Fryer Jr (2019) and selection-adjusted estimates based on
the estimated degree of differential selection in our data. Each row corresponds to a different setting
and/or specification in Fryer Jr (2019). The first column reports the setting/specification-specific
probability of force for white civilians in the selected sample. Columns 2 and 4 report the estimated
Black-white force disparity in the selected sample with and without covariates (note that these are
converted from the odds-ratios that he reports). Columns 3 and 5 report the selection adjusted
estimates, computed using Equations (4) and (8). In column 3, we use our baseline estimate of π
to compute the scaling ratio π

1−π · 1−πs
πs

in Equation (4). In column 5, we use a version of this ratio
which is estimated separately within covariate cells and then averaged across cells, weighting by
estimated sample shares in the unselected sample.
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ONLINE APPENDIX

A Appendix figures and tables

Figure A-1: Visualizing the identification problem

N otes: This figure visually illustrates the central identification challenge of interest. The
potentially-selected target sample is comprised of five non-Black and five Black individuals (so
π = Pr[Ri = b] = 0.5). Dashed ovals denote which individuals are selected into data (Si = 1) and
solid rectangles denote which individuals are treated (Di = 1). Four Black individuals are selected
and two are treated, while two non-Black individuals are selected and one is treated. Hence, the
selected sample disparity is ∆s = 0, while the unselected disparity is ∆ = 0.2.
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Table A-1: Comparison of Chicago and Seattle to U.S. Cities

Chicago Seattle > 500k Pop. > 50k Pop.

Total Arrests 2139.2 ( 372.2) 2253.1 ( 116.7) 3616.2 ( 2108.8) 3645.8 ( 2878.6)

Black Arrestee 4926.1 ( 889.3) 10492.9 ( 333.0) 9261.2 ( 6681.3) 12912.1 ( 12305.7)

White Arrestee 1780.4 ( 364.0) 1829.5 ( 114.5) 5233.4 ( 4067.8) 7524.4 ( 17400.9)

Index Crime Arrests 614.7 ( 75.4) 659.4 ( 27.8) 755.2 ( 336.2) 725.5 ( 381.7)

Black Arrestee 1479.3 ( 246.6) 3116.3 ( 124.0) 1994.3 ( 1066.0) 2937.7 ( 2799.4)

White Arrestee 447.4 ( 59.0) 533.7 ( 30.4) 1049.9 ( 765.3) 1566.8 ( 4575.8)

Violent 148.1 ( 24.6) 232.8 ( 19.2) 284.1 ( 155.7) 197.9 ( 132.8)

Property 466.6 ( 51.9) 426.7 ( 33.9) 471.2 ( 246.2) 527.6 ( 343.2)

Index Crimes 4158.9 ( 199.2) 6744.8 ( 173.7) 5201.6 ( 1713.4) 3507.6 ( 1626.1)

Violent 1003.6 ( 102.1) 689.2 ( 64.8) 924.6 ( 476.2) 454.4 ( 346.3)

Property 3155.4 ( 111.8) 6055.6 ( 192.6) 4277.1 ( 1422.8) 3053.2 ( 1394.7)

Use of Force - Fatal 0.66 ( 0.31) 0.66 ( 0.28) 0.59 ( 0.41) 0.46 ( 0.82)

Black Civilian 1.62 ( 0.53) 1.74 ( 2.39) 1.23 ( 1.62) 1.21 ( 6.64)

White Civilian 0.14 ( 0.13) 0.52 ( 0.39) 0.41 ( 0.47) 0.40 ( 1.38)

Number of Officers 464.3 ( 24.9) 217.1 ( 7.9) 247.8 ( 104.3) 159.4 ( 83.1)

Population 2712608 637850 1026386 ( 739302) 156351 ( 265647)

% Black 31.45 7.19 21.13 ( 19.95) 12.30 ( 15.04)

% White 32.17 66.20 40.42 ( 14.63) 53.34 ( 23.17)

% Hispanic 28.95 6.36 27.83 ( 18.91) 23.34 ( 20.92)

% Age <14 18.86 13.46 19.69 ( 3.12) 20.16 ( 3.59)

% Age 15-24 14.51 13.34 14.90 ( 2.04) 15.61 ( 5.27)

% Age 25-44 33.22 37.52 31.19 ( 3.49) 28.13 ( 3.34)

% Age >45 33.41 35.68 34.22 ( 2.70) 36.10 ( 5.71)

% Education < High School 18.37 6.88 16.90 ( 4.84) 14.54 ( 8.63)

Unemployment Rate 13.15 6.52 10.74 ( 3.96) 9.72 ( 3.41)

Poverty Rate 19.91 13.97 19.52 ( 4.97) 16.18 ( 7.65)

Median Household Income 34730 48914 35654 ( 8772) 40894 ( 14013)

N otes: This table combines information from the FBI Uniform Crime Reports (UCR) on felony index crimes and arrests, with fatal
use of force records from the crowd-sourced database Fatal Encounters, and demographics from the U.S. Census 5-year ACS, between
2014-2018. Arrest, crime, and use of force variables are measured as number of incidents per 100,000 residents; race specific variables are
adjusted by sub-group population. Sample includes cities with complete UCR records; there are 30 (611) cities in the > 500k (> 50k)
population sample.
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Table A-2: Summary statistics, analysis sample of arrests

By Race By City

(1) (2) (3) (4) (5)
All Black Non-black Chicago Seattle

Panel A: Arrestee demographics

Black 0.561 – – 0.626 0.338

Female 0.200 0.213 0.183 0.195 0.214

Age 33.63 33.46 33.85 32.89 36.18
Panel B: Arrest information

Violent Crime 0.253 0.281 0.217 0.289 0.127

Property Crime 0.192 0.194 0.188 0.195 0.180

Drug Crime 0.074 0.079 0.067 0.085 0.034

Other Crime 0.482 0.446 0.529 0.431 0.659

Force 0.0237 0.0241 0.0233 0.0185 0.0419

N Arrests 134361 75441 58920 104041 30320

N otes: This table reports summary statistics for our analysis sample of arrests (N = 134, 361).

Figure A-2: Distribution of number of arresting officers
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N otes: This figure reports the distribution of the number of arresting officers for arrests in our
analysis sample (N = 134, 361), both overall and by city.
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Figure A-3: Police department geographies

(a) Chicago (b) Seattle

N otes: This figure depicts maps of the relevant police geographies for both Chicago and Seattle.
As discussed in section 3.2, we adopt a harmonized terminology for geography throughout the
paper where we refer to the largest areas as a “division,” the second largest areas within divisions
as “sectors,” and the smallest areas as “beats.” In Chicago, there are 5 divisions (“police areas”),
22 sectors (“districts”), and 279 beats. In Seattle, there are 5 divisions (“precincts”), 17 sectors,
and 51 beats. In our baseline empirical specification, the fixed effects in our first stage estimation
(equation 5) are at the level of sector × shift (time of day) × day of week and division × year ×
month and the fixed effects in our second stage estimation (equation 6) are the level of beat ×
shift × day of week and division × year × month. We explore the sensitivity of our results to
changing these fixed effects in appendix table A-4.

Source (Chicago): https://chicagopd.hub.arcgis.com/documents/ChicagoPD::area-district-beat-11x17-1/explore
Source (Seattle): https://www.seattle.gov/police/about-us/about-policing/precinct-and-patrol-boundaries
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Figure A-4: Validating officer-level enforcement intensity

(a) Distribution of estimates
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(b) Correlation of estimates

Location: β = 0.625 (0.034)
Time: β = 0.766 (0.032)
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(c) First stage using partitioned instrument

β = 0.9085 (0.011)
F = 6877
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N otes: Panel (a) illustrates the distribution of estimated officer-level enforcement intensity (i.e.,
assignement-adjusted number of arrests per shift) using the method described in section 4.1. We
depcit both the raw distribution and the distribution after applying empirical Bayes shrinkage
(Morris, 1983) and the figure reports the variance associated with both distributions. In panel (b),
we illustrate the correlation between officer × partition estimates of enforcement intensity, where
the partitions are constructed based on patrol locations or time periods. In other words, this figure
reports the relationship between an officer’s (fixed effects-adjusted) estimated arrests per shift when
working in one set of location and time periods and the same outcome when working in another
set of locations or time periods. Panel (c) illustrates a “first-stage” style estimate when using our
randomized partitions approach. Specifically, we randomly bin an officer’s shifts into two partitions
and then show the relationship between an officer’s enforcement intensity in the opposite partition
and their number of arrests per shift, conditional on assignment and division-time fixed effects.
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Table A-3: Officer characteristics and enforcement intensity

(1) (2)
Enforcement Intensity Enforcement Intensity

Female -0.00366 -0.00441
(0.00142) (0.00136)

Race = Black -0.00853 -0.00406
(0.00191) (0.00184)

Race = Hispanic 0.00127 -0.000227
(0.00171) (0.00160)

Race = Other -0.00261 -0.00164
(0.00236) (0.00207)

Age -0.00658
(0.000560)

Age Squared 0.0000588
(0.00000634)

Mean .062 .062
City FE Yes Yes
Officers 4926 4926

N otes: This table reports regression estimates where we regress each officer’s estimated enforcement
intensity (the estimates presented in figure A-4) on officer characteristics, weighting by the inverse
variance of the officer’s estimated enforcement intensity fixed effect. Robust standard errors in
parentheses. Regressions control for city fixed effects.
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Figure A-5: Overall and crime-specific enforcement intensities

(a) Violent
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(b) Property
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(c) Drug
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(d) Other
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N otes: This figure depicts the relationship between an officer’s overall enforcement intensity (hor-
izontal axis) and crime-specific enforcement intensities, estimated in an identical way except using
the number of arrests of a specific type as the outcome in equation (5). Blue circles depict the
relationship using the raw (regression-adjusted) enforcement intensities and orange squares depict
the relationship using estimates which have been shrunken via empirical Bayes. To ensure that
this relationship is not mechanical, these figures use a cross-partition approach where each offi-
cer’s shifts are randomly divided into two partitions, and we show the relationship between an
officer’s overall enforcement intensity estimated in one partition and the crime-specific enforcement
intensities estimated in the opposite partition.
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Table A-4: Robustness to specification choices

Racial Composition Disparity in Force

(1) (2) (3) (4) (5) (6)

πs π Difference ∆s ∆̃ Difference

Panel A: First Stage Measure

Fraction (Baseline) 0.5622 0.4938 0.0684 0.0055 0.0111 -0.0056
(0.0436) (0.0205) (0.0018) (0.0015)

Binary 0.5622 0.4924 0.0698 0.0055 0.0112 -0.0057
(0.0414) (0.0211) (0.0018) (0.0015)

Count 0.5622 0.4965 0.0656 0.0055 0.0109 -0.0054
(0.0417) (0.0199) (0.0018) (0.0014)

Count (Winsorized) 0.5622 0.4937 0.0684 0.0055 0.0111 -0.0056
(0.0408) (0.0197) (0.0018) (0.0014)

Fraction (Winsorized) 0.5622 0.4874 0.0748 0.0055 0.0115 -0.0060
(0.0426) (0.0199) (0.0018) (0.0014)

Panel B: First Stage Aggregation

Weighted Mean (Baseline) 0.5622 0.4938 0.0684 0.0055 0.0111 -0.0056
(0.0430) (0.0186) (0.0017) (0.0013)

Unweighted Mean 0.5622 0.4913 0.0709 0.0055 0.0112 -0.0058
(0.0430) (0.0192) (0.0017) (0.0014)

Minimum 0.5622 0.5008 0.0613 0.0055 0.0106 -0.0051
(0.0429) (0.0204) (0.0019) (0.0015)

Maximum 0.5622 0.4976 0.0646 0.0055 0.0108 -0.0053
(0.0477) (0.0245) (0.0019) (0.0016)

Randomized 0.5622 0.5048 0.0574 0.0055 0.0103 -0.0048
(0.0451) (0.0231) (0.0020) (0.0016)

Panel C: Fixed Effects

Sector in Second Stage 0.5622 0.4787 0.0835 0.0055 0.0121 -0.0066
(0.0479) (0.0219) (0.0015) (0.0014)

Combined Location and Time 0.5622 0.4734 0.0888 0.0059 0.0129 -0.0070
(0.0479) (0.0219) (0.0015) (0.0013)

Beat in First Stage∗ 0.5622 0.4821 0.0801 0.0055 0.0119 -0.0064
(0.0466) (0.0204) (0.0014) (0.0013)

N otes: This table presents estimates which are identical to the first row of table 2 except that we
vary the measure used to construct enforcement intensity (panel a), the method for aggregating
officer-level enforcement intensity into arrest-level enforcement intensity (panel b), and the fixed
effects included in the estimation (panel c). In panel a, we winsorize the first stage measure at the
99.9th percentile. ∗We observe assigned beats in Chicago but not in Seattle. In this specification,
we define the assignment fixed effects as City × Sector × Weekend × Shift in Seattle and City ×
Beat × Weekend × Shift in Chicago.
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Table A-5: Split-sample IV estimates

OLS Split-sample IV

(1) (2) (3)
Black Black Black

Enforcement intensity -0.156 -0.173
(own partition) (0.009) (0.007)

Enforcement intensity -0.165
(opposite partition) (0.028)

N otes: This table reports estimates of the linear slope from a regression of an indicator for whether
an arrestee is Black on arrest-level enforcement intensity using the sample of arrestees and con-
ditioning on assignment and division-time fixed effects. In all columns, we use the randomized
partitioning of officer shifts underlying our baseline approach. In column 1, we report the esti-
mated slope when using the arrest-level enforcement intensity in the same partition as a given
arrest. In column 2, we report the estimated slope when using the arrest-level enforcement inten-
sity from the opposite partition (this is the slope we report in figure 4). In column 3, we report a
split-sample IV estimate where we instrument enforcement intensity in the arrest’s partition with
estimated enforcement intensity in the opposite partition.
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Table A-6: Measurement error bounds on π and ∆̃

Racial Composition Disparity in Force

(1) (2) (4) (5)

πs π ∆s ∆̃

Panel A: Overall estimates
Baseline 0.5622 0.4938 0.0055 0.0111
Most conservative 0.5368 0.0077
Least conservative 0.4051 0.0164

Panel B: Within-city estimates

Baseline 0.5622 0.4985 0.0055 0.0107
Most conservative 0.5374 0.0088
Least conservative 0.4288 0.0160

N otes: This table reports upper and lower bound estimates for the parameters of interest as
described in section 5.2. Specifically, we estimate π̂ = β̂0 + β̂1Ñ · q̂, where β0 and β1 are in the
intercept and slope from a regression of whether an arrestee is Black on arrest-level enforcement
intensity Ñ , conditioning on assignment fixed effects (i.e., the relationship depicted in figure 4).
Here we use the the split-sample IV estimate of the slope β1 (reported in table A-5) and use upper
and lower bound estimates of the maximum enforcement intensity q̂ to construct most and least
conservative bounds. Our most conservative bound uses the 99th percentile of the empirical Bayes
shrunken distribution of the enforcement intensity measures. Our least conservative bound uses
the maximum of the unshrunken distribution of enforcement intensity measures. Panel (b) reports
the same information except that everything is computed separately by city and then averaged.
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Figure A-6: Setting-specific estimates of π
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N otes: Same as figure 4 except that we report the relationship separately by city.
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Table A-7: Estimates dropping arrests for officer assault

Racial Composition Disparity in Force

(1) (2) (3) (4) (5) (6)

πs π Difference ∆s ∆̃ Difference

Binscatter 0.5616 0.4929 0.0687 0.0050 0.0103 -0.0053
(0.0430) (0.0189) (0.0017) (0.0013)

Linear 0.5616 0.4944 0.0672 0.0050 0.0102 -0.0052
(0.0430) (0.0126) (0.0012) (0.0008)

N otes: Same as table 2 except that we drop arrests which are for assault on officers (N = 565).

Table A-8: Estimates for use of force with civilian injuries

Racial Composition Disparity in Force

(1) (2) (3) (4) (5) (6)

πs π Difference ∆s ∆̃ Difference

Binscatter 0.5622 0.4938 0.0684 0.0007 0.0021 -0.0014
(0.0437) (0.0211) (0.0007) (0.0004)

Linear 0.5622 0.4952 0.0669 0.0007 0.0020 -0.0014
(0.0428) (0.0124) (0.0006) (0.0002)

N otes: Same as table 2 except that we focus only on force incidents associated with civilian injury.
The share of force incidents in our main sample associated with civilian injury is 26 percent and
the share of non-Black arrests associated with an injury-causing force incident is 0.5787 percent. In
Chicago, our data indicate whether a force incident was associated with an injury. In Seattle, our
data include a measure of “force level” and we use force incidents associated with the levels “force
reasonably expected to cause injury exceeding transitory pain” and “force reasonably expected to
cause bodily harm.”
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Table A-9: Moment inequality tests for extremum-officer monotonicity

Bootstrap p-value

(1) (2)
Binscatter Linear

Black 0.24 0.52

Female 0.09 0.09

Age 0-24 0.18 0.29

Age 25-34 0.22 0.60

Age 35-44 0.82 0.94

Age 45+ 0.43 0.36

Violent crime 0.82 0.91

Property crime 0.80 0.92

Drug crime 0.13 0.15

Other crime 0.13 0.17

Joint: all covariates 0.12 0.11

N otes: This table reports bootstrapped p-values for the moment inequality test for split-sample
monotonicity, described in further detail in appendix B.
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Table A-10: Estimates of π conditional on covariates

(1) (2) (3)
πs π Difference

Baseline 0.5622 0.4938 0.0684
(0.0429) (0.0189)

Baseline + controls 0.5622 0.5069 0.0553
(0.0435) (0.0191)

Within crime type 0.5622 0.5030 0.0592
(0.0530) (0.0291)

Within crime type 0.5622 0.4863 0.0759
(crime-specific propensities) (0.0484) (0.0258)

Within covariates 0.5622 0.5090 0.0532
(0.0503) (0.0264)

N otes: This table reports estimates of π using specifications which also condition on other arrestee
covariates. In the second row, we repeat our baseline binscatter approach except that, in the second
stage, we additionally include covariate cell fixed effects at the level of gender × age bin (0-24; 25-34;
35-44; 45-54; 55+) × crime type (violent; property; drug; other). Third row reports within-crime
type estimates, obtained by separately estimating π for each crime type and aggregating up the
crime-type estimates by each crime type’s estimated share in the target sample. Fourth row repeats
the analysis in the third row except that we also use crime-specific first stage estimates (i.e., to
estimate the violent crime π, we use an officer’s violent-crime specific enforcement intensity). The
final row conducts within-X estimation, obtained by estimating a π separately for each covariate
cell (same cells as in the second row) and aggregating up, weighting by each covariate groups
estimated share in the target sample. All analyses use the binscatter approach.
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Table A-11: Covariates across samples

(1) (2) (3)
Selected sample Target sample Not selected sample
(Pi = 1, Si = 1) (Pi = 1) (Pi = 1, Si = 0)

Black 0.5622 0.4938 0.4852
(0.0348) (0.0429) (0.0440)

Female 0.1995 0.1780 0.1753
(0.0035) (0.0166) (0.0187)

Age 0-24 0.2823 0.2715 0.2702
(0.0069) (0.0188) (0.0207)

Age 25-34 0.3030 0.3373 0.3416
(0.0042) (0.0178) (0.0199)

Age 35-44 0.1848 0.1964 0.1979
(0.0044) (0.0118) (0.0131)

Age 45+ 0.1980 0.1578 0.1528
(0.0042) (0.0138) (0.0154)

Violent crime 0.2530 0.0314 0.0037
(0.0099) (0.0161) (0.0178)

Property crime 0.1915 0.0432 0.0246
(0.0118) (0.0164) (0.0176)

Drug crime 0.0737 0.1348 0.1425
(0.0080) (0.0344) (0.0381)

Other crime 0.4819 0.7906 0.8292
(0.0119) (0.0494) (0.0553)

N otes: This table reports average covariates of arrestees/potential arrestees across samples. Col-
umn (1) reports the averages in the selected sample of arrestees. Column (2) reports the averages for
the target sample, estimated using our baseline approach. Column (3) reports the averages for the
not selected sample (potential arrestees who are not arrested), using the identity Pr[Xi = x|Pi =
1] = Pr[Xi = x|Pi = 1, Si = 1]Pr[Si = 1|Pi = 1] + Pr[Xi = x|Pi = 1, Si = 0]Pr[Si = 0|Pi = 1]. To
calculate the covariate distributions in the target sample, we first conduct our baseline procedure
(section 4.3) with I[Xi = x] on the left-hand side to identify Pr[Xi = x] for all demographic cells.
To calculate the probability of selection into the sample, we use Pr[Si = 1|Pi = 1] = E[Ñj ]/Ñj∗ ,
as described in section 5.1.
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Table A-12: Covariates by race and sample

Selected sample Target sample Not selected sample
(Pi = 1, Si = 1) (Pi = 1) (Pi = 1, Si = 0)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Black Non-Black Diff Black Non-Black Diff Black Non-Black Diff

Covariate index 0.0245 0.0232 0.0013 0.0190 0.0189 0.0001 0.0182 0.0184 -0.0002
(Predicted force) (0.0022) (0.0020) (0.0004) (0.0018) (0.0017) (0.0005) (0.0018) (0.0017) (0.0005)

Female 0.2127 0.1826 0.0301 0.1746 0.1814 -0.0068 0.1690 0.1812 -0.0122
(0.0045) (0.0052) (0.0075) (0.0212) (0.0194) (0.0194) (0.0245) (0.0214) (0.0219)

Age 0-24 0.3067 0.2501 0.0566 0.3117 0.2316 0.0800 0.3124 0.2297 0.0827
(0.0078) (0.0097) (0.0091) (0.0267) (0.0184) (0.0228) (0.0301) (0.0199) (0.0254)

Age 25-34 0.2835 0.3272 -0.0437 0.3140 0.3593 -0.0452 0.3184 0.3627 -0.0442
(0.0041) (0.0046) (0.0051) (0.0231) (0.0171) (0.0224) (0.0265) (0.0188) (0.0254)

Age 35-44 0.1623 0.2130 -0.0507 0.1728 0.2190 -0.0462 0.1744 0.2196 -0.0453
(0.0043) (0.0059) (0.0045) (0.0152) (0.0162) (0.0178) (0.0173) (0.0179) (0.0200)

Age 45+ 0.2125 0.1789 0.0337 0.1788 0.1369 0.0419 0.1739 0.1324 0.0415
(0.0052) (0.0052) (0.0061) (0.0176) (0.0186) (0.0209) (0.0201) (0.0204) (0.0232)

Violent crime 0.2811 0.2170 0.0641 0.0406 0.0224 0.0181 0.0057 0.0017 0.0040
(0.0127) (0.0113) (0.0131) (0.0232) (0.0119) (0.0126) (0.0236) (0.0115) (0.0129)

Property crime 0.1941 0.1881 0.0061 0.0490 0.0375 0.0116 0.0280 0.0215 0.0066
(0.0123) (0.0101) (0.0135) (0.0182) (0.0163) (0.0101) (0.0207) (0.0172) (0.0106)

Drug crime 0.0790 0.0669 0.0121 0.1670 0.1034 0.0637 0.1798 0.1073 0.0726
(0.0105) (0.0064) (0.0077) (0.0575) (0.0259) (0.0546) (0.0649) (0.0285) (0.0619)

Other crime 0.4459 0.5281 -0.0822 0.7620 0.8185 -0.0565 0.8078 0.8494 -0.0415
(0.0121) (0.0165) (0.0144) (0.0467) (0.0601) (0.0531) (0.0543) (0.0656) (0.0588)

Joint test: level differences
Demographics p < 0.01 p < 0.01 p = 0.01
Crime type p < 0.01 p = 0.38 p = 0.48
Both p < 0.01 p = 0.06 p = 0.17

Joint test: proportional differences

Demographics p < 0.01 p = 0.01 p = 0.02
Crime type p < 0.01 p = 0.10 p = 0.17
Both p < 0.01 p = 0.05 p = 0.16

Notes: This table reports covariate averages by racial group (Black and non-Black) and by sample, where “unselected” refers to the subgroup who is in the target sample
but not in the selected sample. Table footer reports the p-values from joint tests that covariates are equal across race for each sample. We calculate race-specific covariate
distributions in the target sample using the procedure in table 4. To calculate the characteristics among the unselected individuals in the target sample (Pi = 1, Si = 0), we
use the identity Pr[Xi = x|Ri, Pi = 1] = Pr[Xi = x|Ri, Pi = 1, Si = 1]Pr[Si = 1|Ri, Pi = 1] + Pr[Xi = x|Ri, Pi = 1, Si = 0]Pr[Si = 0|Ri, Pi = 1].
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Figure A-7: Implied adjustments for Fryer Jr (2019) estimates
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N otes: This figure illustrates our selection correction to the estimate in Fryer Jr (2019), focusing
on his analysis of officer-involved shootings in Houston in the subsample with available arrest
narratives. The blue line reports the selection-corrected disparity as a function of the disparity in
the selected sample and the selection ratio π

1−π · 1−πs
πs

. The point where this ratio = 1 corresponds
to his estimate in the selected sample. Our estimate of this ratio is depicted with a vertical orange
line and the orange square shows the associated selection-corrected estimate of the disparity. These
estimates are also reported in the third row of table 5.
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B Technical Appendix

B.1 Moment inequality test

In Section 5.3, we present a joint test of the assumptions of our model. Under exogeneity
and extremum-officer monotonicity, the arrestee composition of each officer j must satisfy
the following inequalities:

πjÑj ≤ πÑj∗ ≤ πjÑj + (Ñj∗ − Ñj), ∀j ∈ J ,

where πj and Ñj are the regression-adjusted values of officer-specific Black composition of
arrestees and rate of arrest within a shift, respectively, π is the true share black in the target
sample, and Ñ∗

j is the maximal rate of arrest across officers.21

To jointly test these inequalities, we estimate π̂j, Ñj,
22 π̂, and we construct the following

estimated moments for each officer:

X̂ lb
j = π̂jÑj − π̂Ñj

X̂ub
j = π̂Ñj∗ − π̂jÑj − (Ñj∗ − Ñj)

If the assumptions of our empirical design are correct, these moments should satisfy the
inequalities E[X̂ lb

j ] ≤ 0 and E[X̂ub
j ] ≤ 0. In finite samples, however, some inequalities may

be violated even when the assumptions are correct.
We will follow the bootstrapping approach of Romano et al. (2014) and Bai et al. (2022)

to conduct inference on this moment inequality test. The test statistic we will construct is
a maximum of the scaled moments:

T̂ = max{max
j

X̂ lb
j ,max

j
X̂ub

j , 0}

And we take the following steps:

1. Conduct Bayesian bootstrap with 100 iterations. Weights are drawn from a gamma
distribution and randomized at the level of beat. Calculate X̂ ·b

j,i for each moment in
each iteration, where we use the superscript ·b to generically denote both lower and
upper bound moments and i denotes the iteration.

2. Calculate

ĉ(1)(1− β) ≡ inf
󰁱
c ∈ R : Pr

󰁫
max
j,{l,u}

󰀃
X̂ ·b

j − X̂ ·b
j,i

󰀄
≤ c

󰁬
≥ 1− β

󰁲

21To construct πj for each officer, we construct a dataset which is at the arrest-by-arresting officer
level. We then regress an indicator for whether the arrestee is Black on the same “design” fixed
effects as in our baseline approach and officer fixed effects, storing the estimated officer effects.
When doing so, we weight each observation by one over the number of arresting officers, ensuring
that our second stage estimation using this dataset would yield the same estimated pi.

22In a slight abuse of notation, we use Ñj to indicate both the true and estimated officer-level
arrest frequency.
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In other words, for each bootstrap, calculate maxj,{l,u}
󰀃
X

·b
j −X

·b
j,i

󰀄
, and then calculate

the (1− β)th percentile across iterations.

3. Calculate

û·b
j,i ≡ min

󰁱
X̂ ·b

j,i + ĉ(1)(1− β), 0
󰁲

and

ĉ(2)(1− α + β) ≡

inf
󰁱
c ∈ R : Pr

󰁫
max

󰁱
max
j,{l,u}

X̂ ·b
j,i − X̂ ·b

j + û·b
j,i, 0

󰁲
≤ c

󰁬
≥ 1− α + β

󰁲

In words, for each bootstrap, we calculate max
󰁱
maxj,{l,u} X̂

·b
j,i − X̂ ·b

j + û·b
j,i, 0

󰁲
, the

test statistic for that bootstrap adjusted by ûj,i, and then calculate the (1− α + β)th
percentile across iterations.

4. The test “passes” if T̂ > ĉ(2)(1− α + β).

The parameter α ∈ (0, 1/2) is the size of the test, and β is a tuning parameter that must
satisfy 0 < β < α. We set β = 0.01, and to solve for the p-value of the test we loop over
values α and find the largest value for which the test “passes”, i.e we fail to reject the null
hypothesis that all moments are satisfied.

B.2 Identification with a weaker monotonicity assumption

The moment inequalities above apply under exogeneity and extremum-agent monotonicity.
In this section, we show how researchers could still place informative bounds on π in a setting
with a more relaxed monotonicity assumption.

Instead of requiring that there exist an officer j∗ ∈ J for whom Sij∗ = maxj Sij, and
thus Sij∗ = Pi, we can instead assume only that the size of the target sample can not be
too much larger than the largest individual-agent selected sample. We parameterize this
requirement by a number 󰂃 ≥ 0, which limits how much the target sample can exceed the
most selection-prone agent. We now define this new “󰂃−monotonicity” assumption:

󰂃−Monotonicity: Pr[Pi = 1] ≤ max
j

Pr[Sij = 1] + 󰂃

Note that the extremum-agent monotonicity assumption is a form of 󰂃−monotonicity with
󰂃 = 0. Using the definition Pi = maxj Sij, setting 󰂃 = 0 requires Pr[maxj Sij = 1] =
maxj Pr[Sij = 1], and this latter expression is achieved by the extremum agent. For this
reason, 󰂃−monotonicity can be interpreted as a generalization of extremum-agent mono-
tonicity.

We continue to define π = Pr[Ri = b|Pi = 1], though the target sample is no longer
identified from the most selection-prone agent. Define p̄ = maxj Pr[Sij = 1] as the highest
observed selection probability, and let J̄ = {j|Pr[Sij = 1] = p̄]} be the set of all agents
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with the highest observed selection probability. Under exogeneity and 󰂃−monotonicity, the
following inequalities hold:

πj p̄ ≤ π(p̄+ 󰂃) ≤ πj p̄+ 󰂃, ∀j ∈ J̄

Our empirical strategy estimates E[Ri = b|pj = maxj pj] by extrapolating to this value
across pj. Since this expression is an expectation across officers with maximal observed
pj, the above inequalities hold in expectation with πj replaced by E[Ri = b|pj = maxj pj].
Thus, our estimation strategy can still place informative bounds on π under a relaxation of
extremum-agent monotonicity.

B.3 Interpreting our estimand

In this section, we present a potential outcomes framework, and we show the conditions
under which our estimands of the unconditional and conditional force gap correspond to the
causal effect of race on force. We then discuss the specifics of estimating force gaps that
condition on observables.

Each individual i has a pair of potential selection outcomes, (Si(b), Si(w)), which depend
on whether they are Black or non-Black. In addition, they have a pair of treatment outcomes,
(Di(b), Di(w)). Selection into the sample is necessary for treatment, so Si(r) = 0 ⇒ Di(r) =
0. The individuals’ realized selection and force outcomes can be represented in terms of
potential outcomes using the “switching equations”, Si = Si(b)I[Ri = b] + Si(w)I[Ri = w],
and Di = Di(b)I[Ri = b] +Di(w)I[Ri = w].

For simplicity, we abstract throughout from the officer encountered, which would increase
the set of potential outcomes to include all possible officers. We also abstract from the set of
location and division-time fixed effects used empirically, and all the discussion that follows
can be thought of as conditioned on location and time.

Our first estimand of interest is the selection-corrected race gap, scaled by the selection
probability for Black individuals, ∆̃ = E[Di|Ri=b]−E[Di|Ri=w]

E[Si|Ri=b]
. A question we address here is

what assumptions are required to give this estimand a causal interpretation. To that end,
we introduce the notion of unconditional unconfoundedness:

Assumption 1 (Unconditional Unconfoundedness).

(Si(b), Si(w), Di(b), Di(w)) ⊥ Ri

This assumptions states that an individual’s realized race Ri is independent of their
potential outcomes.

Proposition 1. Under Assumption 1, ∆̃ = E[Di(b)−Di(w)]
E[Si|Ri=b]

.

This proposition states that, under unconditional unconfoundedness, our selection-corrected
force gap represents a scaled average treatment effect of race for the target sample. This
proposition can be shown very simply:

∆̃ =
E[Di|Ri = b]− E[Di|Ri = w]

E[Si|Ri = b]
=

E[Di(b)|Ri = b]− E[Di(w)|Ri = w]

E[Si|Ri = b]
=󰁿󰁾󰁽󰂀

by A1

E[Di(b)−Di(w)]

E[Si|Ri = b]

67



We now present an additional assumption, which is that the racial gap in sample selection
only goes in one direction:

Assumption 2 (Selection Monotonicity).

Si(b) = 0 ⇒ Si(w) = 0

The next proposition shows that these two assumptions guarantee that our estimand also
corresponds to the causal effect of race on force for Black arrestees.

Proposition 2. Under Assumptions 1 and 2, ∆̃ = E[Di(b)−Di(w)|Ri = b, Si = 1].

We prove the statement below:

∆̃ =
E[Di|Ri = b]− E[Di|Ri = w]

E[Si|Ri = b]

=
1

E[Si|Ri = b]

󰁫
E[Di(b)|Ri = b]− E[Di(w)|Ri = w]󰁿 󰁾󰁽 󰂀

=E[Di(w)|Ri=b] by A1

󰁬

=
1

E[Si|Ri = b]

󰁫
E[Di(b)|Ri = b, Si = 1]E[Si|Ri = b] + E[Di(b)|Ri = b, Si = 0]󰁿 󰁾󰁽 󰂀

=0, by Si(b)=0⇒Di(b)=0

(1− E[Si|Ri = b])

− E[Di(w)|Ri = b, Si = 1]E[Si|Ri = b]− E[Di(w)|Ri = b, Si = 0]󰁿 󰁾󰁽 󰂀
=0 by A2

(1− E[Si|Ri = b])
󰁬

= E[Di(b)−Di(w)|Ri = b, Si = 1]

It is worth considering what the selection monotonicity assumption is providing in this
proposition. This assumption states that, if an individual is not in the sample of arrestees
when Black (Si(b) = 0), they would not appear in the sample of arrestees if non-Black
(Si(w) = 0). This guarantees that the sample of non-Black arrestees does not contain
any individuals who, if their race had been counterfactually shifted to Black, would not
have been arrested. Consider if we did not assume selection monotonicity. Then, ∆̃ =
E[Di(b)−Di(w)|Ri = b, Si = 1]− 1−E[Si|Ri=b]

E[Si|Ri=b]
E[Di(w)|Ri = b, Si = 0] ≤ E[Di(b)−Di(w)|Ri =

b, Si = 1]. In that case, the non-Black arrestees have weakly too many force cases relative to
the right comparison for the Black arrestees, so the selection-corrected force gap understates
the causal effect of race on force for Black arrestees.

B.4 Conditional force gaps

In Section 6, we decompose our force gaps into components that reflect racial force gaps
among individuals with the same demographic characteristics and the force gap explained by
racial differences in other demographics. We now show how, when examining gaps conditional
on X, we can identify causal objects under a less strict assumption.

We now introduce the notion of conditional unconfoundedness, which states that race is
independent of potential outcomes among individuals with the same value of Xi:
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Assumption 3 (Conditional Unconfoundedness).

(Si(b), Si(w), Di(b), Di(w)) ⊥ Ri | Xi

This assumption is a standard “selection on observables” assumption. We next show
that, under this assumption, we can identify the causal effect of race on force by restricting
to comparisons within observable characteristics.

For notational simplicity, we will use the following shorthands throughout this section:
Dr,x = E[Di|Ri = r,Xi = x], px = Pr[Xi = x], and px,r = Pr[Xi = x|Ri = r].

Proposition 3. Under Assumption 3,

Db,x −Dw,x = E[Di(b)−Di(w)|Xi = x] (B-1)
󰁛

x

󰀅
Db,x −Dw,x

󰀆
px = E[Di(b)−Di(w)]

󰁛

x

󰀅
Db,x −Dw,x

󰀆
px,b = E[Di(b)−Di(w)|Ri = b ]

󰁛

x

󰀅
Db,x −Dw,x

󰀆
px,w = E[Di(b)−Di(w)|Ri = w]

Equation (B-1) is proven exactly the same as Proposition 1, and the rest of the equations
apply equation 1 and the law of iterated expectations.

B.4.1 Calculation of within-X gap

We perform the following procedure to estimate the set of force gaps that are conditional on
X characteristics.

First, we conduct our baseline estimation approach with I[Xi = x] on the left-hand side
to identify Pr[Xi = x] for all demographic cells. Then, for each value of Xi = x, we restrict
the sample to this set of observations and conduct our approach with Ri = b on the left-hand
side to identify Pr[Ri = b|Xi = x], which we denote by πx. We denote the selected Black
share for X, Pr[Ri = b|Xi = x, Si = 1], by πx

s .
Note that, because of the reduced sample size for each demographic group, our estimates

of πx are quite noisy. To improve precision, we perform the following procedure. Letting

b
(0)
x be the initial estimated value for πx, we calculate λx = b

(0)
x

πx
s
. We then average over all X

values and construct λ =
󰁓

x p
xλx. Our updated value for the share Black is b

(1)
x = λπx

s . The
intuition for this procedure is that it assumes that the “overselection” of Black individuals
relative to the target sample is identical for all demographic cells, allowing us to reduce
imprecision in the Black share for each cell.23

23In the absence of this procedure, if we use b
(0)
x as our estimates of the race shares in each

demographic cell, we find that 40-50 percent of the unconditional force gap is within-X rather than
70-80 percent. The reason for this lower value is because E[ π̂x

1−π̂x
· 1−πx

s
πx
s

] ≥ E(π̂x)
1−E(π̂x)

· 1−πx
s

πx
s

, where
the expectation is over the estimation error in π̂x. Therefore, an increase in estimation error in π̂x
biases our estimate of ∆x downwards.
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We then estimate the following for each value of X the conditional force gap, ∆x =
Db,x −Dw,x, using the analogue to Equation 4:

∆x = ∆x
s Sb,x +

󰀅
1− πx

1− πx

· 1− πx
s

πx
s

󰀆
Dw,x

B.4.2 KOB decompositions

With our estimates of within-X force gaps, we the decompose our force gaps into components
that reflect racial force gaps among individuals with the same demographic characteristics
and the force gap explained by racial differences in other demographics.

A well-known feature of KOB decompositions is that they are non-unique (Neumark,
1988). For each value of γ ∈ [0, 1], we can decompose the unconditional gap ∆ as

∆̃ =
󰁛

x

∆x

E[Si|Ri = b]

󰀅
γpx,b + (1− γ)px,w

󰀆
+
󰁛

x

󰀅
px,b − px,w

󰀆(1− γ)Db,x + γDw,x

E[Si|Ri = b]
(B-2)

where γ ∈ [0, 1].
We present in Section 6.1 the case where γ = π, where the first term is weighted by the

X-composition of the overall target sample. In that case, and with Assumption 3, the first
term of the decomposition captures E[Di(b) −Di(b)]/E[Si|Ri = b], the scaled causal effect
for the whole target sample.

If we instead use γ = 1, the first term is weighted by the X-composition of the Black target
sample. In that case, and with Assumption 3, the first term of the decomposition captures
E[Di(b) − Di(b)|Ri = b]/E[Si|Ri = b]. If we further impose Assumption 2 of selection
monotonicity, this term also reflects E[Di(b) −Di(w)|Ri = b, Si = 1], the (unscaled) causal
effect for the Black arrestee sample.

If we instead use γ = 0, and with Assumption 3, the first term in Equation B-2 reflects
E[Di(b)−Di(b)|Ri = w]/E[Si|Ri = b], the scaled causal effect of race on force for non-Black
individuals in the target sample.

Table B-1 reports the results of these KOB decompositions. The unconditional force gap
is, again, 0.0111 (0.0017). For the whole target sample, the conditional force gap is 0.0073
(0.0024). For the Black target sample, the conditional force gap is 0.0078 (0.0029), and for
non-Black individuals it is 0.0069 (0.0020).

In all cases, the decomposition indicates that the majority of the race gap in force is
due to gaps among individuals with the same observables Xi rather than differences in the
X−composition between Black and non-Black individuals.

In the bottom panel of the table, we probe the robustness of these findings to differ-
ent choices of demographic cells. When we expand the age categories from two groups
(above/below 35) to five groups, the within-X gap for the target sample increases from
0.0073 to 0.0087. When we instead coarsen the demographic breakdown to only consider
cells of Felony/non-Felony-by-Young/Old, the within-X gap for the target sample increases
from 0.0073 to 0.0082.
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Table B-1: Decomposition of racial force gap

Unconditional 0.0111

Force Gap (∆̃ ) (0.0017)

Within-X Gaps

All Target Sample 0.0073
(0.0024)

Black Target Sample 0.0078
(0.0029)

Non-Black Target Sample 0.0069
(0.0020)

Robustness for
All Target Sample
Within-X Gaps

5 Age Bins 0.0087
(0.0024)

Felony x Young-Old 0.0082
(0.0022)

N otes: This table reports estimates of within-X force gaps, calculated for different target samples,
as described in appendix B.

71



B.5 Comparison to selection correction approach

Our study shows how to correct for sample selection in the estimation of racial disparities
in use of force. An important consideration is how our approach differs in its assumptions
— and what it estimates — from a traditional selection correction approach in the spirit of
Heckman (1979).

To compare the two approaches, assume that each individual-officer interaction has a
potential force outcome D∗

ij ∈ {0, 1}, but force only occurs if there is an arrest, Dij = D∗
ijSij.

Suppose that individual arrest satisfies a threshold crossing model,

Sij = 1I[πij0 + πij1Bi + ui > 0]

and that the potential force outcome satisfies a linear equation,

D∗
ij = αij0 + αij1Bi + 󰂃i,

where at first we allow αij0 and αij1 to differ by officer j.
The identification problem induced by selection into Sij = 1 can be seen from the condi-

tional expectation of force among arrested individuals:

E[Dij|Bi, Sij = 1] = αij0 + αij1Bi + E[󰂃i|πij0 + πij1Bi + ui > 0] (B-3)

The bias in identifying αij1 arises because Bi also impacts selection into the sample. If
πij1 ∕= 0, and u is not independent of 󰂃, then the coefficient on Bi in a linear regression of
force among the selected sample will be a biased estimate of αij1.

First, note that the estimands of interest in this setup are αij0 and αij1, which give us
the racial disparities in potential force rates D∗

ij. In contrast, the approach in our main
text identifies the racial disparities in realized force rates Dij. One way to think about this
distinction is that our approach tells us the realized racial difference in force rates in the
unselected sample, while the selection correction approach tells us the racial difference in
force rates if officers were required to arrest everyone in the sample, generating an increased
set of realized force rates.

Second, what assumptions are required to identify the estimand? The selection correction
solution is to find a variable that impacts arrests but does not impact force. In our setting,
the obvious choice for this variable is the stopping officer, whose variation in arrest propensity
we use in our analysis. To utilize the officer as an instrument for arrests, however, requires
imposing that the outcome equation is not a function of stopping officer, i.e. αij0 = αi0

and αij1 = αi1. We can then use each officer’s share of arrests for Black and non-Black
individuals as instruments and construct estimates ûi that have independent variation in the
outcome equation (B-3). However, this crucial additional assumption, that officers do not
affect realized force outcomes other than through selection Sij, is implausible. We therefore
view our approach as more credible.
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C Legal Context

The goal of this paper is to examine race discrimination in police use of force, taking seriously
concerns about selection into who is exposed to a police interaction which could lead to force.
Specifically, we focus on use of force events that occur during arrest interactions, which means
that we must consider the population that has the potential to be arrested when adjusting
for selection into the sample. Our target sample, or unselected population, is defined as the
population of individuals who face the risk of arrest, or potential arrestees.

Our notion of the target sample can also be related to the population of individuals who
are legally eligible to be arrested. In this Appendix, we discuss the legal context for two
aspects of this setting and how they may be connected to our conceptual framework and
empirical approach: (1) the legal basis for an arrest interaction, and (2) the legal basis for
establishing discrimination in police interactions.

C.1 Legal basis for arrest

The legal standard for an officer making an arrest of an individual is probable cause, or
a reasonable basis for believing that a crime may have been committed at the time of the
arrest.24 While some arrests are made with warrants previously issued by a judge, in practice,
a large fraction of arrests are made without a warrant at the discretion of patrol officers at
the scene, either because an officer directly observed a crime or has probable cause to believe
a crime occurred.

Importantly, while an arrest charge can be dismissed after the fact by a prosecutor or
a judge, a dismissal does not typically render the initial arrest interaction as illegal or as
a false arrest. This sequence of events is important because it means that officer decisions
about who to arrest, and thus which arrest interactions have the potential to lead to force,
are not likely to be responsive to later determinations about whether an arrest charge is
dismissed. Case law has continued to uphold the legality of an initial arrest interaction,
even when charges are later dismissed. A stark example is District of Columbia vs. Wesby
(2018),25 a Supreme Court case that held that officers are protected from civil lawsuits
under qualified immunity for government officials, even in cases when they lacked actual
probable cause because “a reasonable officer could conclude that there was probable cause”
permitting the arrests at the time. It follows that the key component of the legality of an
arrest is the reasonableness standard, or the principle that an arrest may only be evaluated
against whether another reasonable officer may have also made the same determination in
the same circumstance (Newman, 2006).

It is likely that successful claims of false arrests are rare in practice, given that the burden
of proof typically falls on the plaintiff, cases are expensive to file and pursue, and the probable
cause standard is a low bar (Newman, 2006; Scarborough and Hemmens, 1999).26 When

24Legal Information Institute. Cornell University. https://www.law.cornell.edu/wex/

probable_cause
25District of Columbia v. Wesby, 583 U.S. (2018). https://supreme.justia.com/cases/

federal/us/583/15-1485/
26Scarborough and Hemmens (1999) review a sample of US Circuit of Appeals cases and find

that 22 percent of false arrest claims yielded successful outcomes for plaintiffs.
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the consequences for a false arrest are low, the sole discretion of an officer applies in their
decisions to arrest, meaning that officer judgment determines the selection of individuals into
arrest, and into risk of potential police use of force. Moreover, claims of false arrest against
officers often involve incidents of police use of force, meaning that it is vital to include all
discretionary arrests when considering the sample of civilians who may be susceptible to use
of force, even extreme cases of arrests that may have questionable basis of probable cause.

Because the reasonableness of any given officer is subjective, one potential way to inter-
pret this standard is to ask whether another officer would have made a particular arrest in a
given situation. In this way, our use of an “extremum officer” or maximally enforcing officer
to identify the race composition of potential arrestees maps to the legal standard for arrest,
if we interpret this officer as a reasonable officer “reference point” for other officers’ arrest
behavior.

C.2 Establishing race discrimination in use of force

The legal basis for establishing discrimination in policing interactions relates to the equal
protection clause of the 14th amendment of the Constitution, which specifies that no state
shall “deny to any person within its jurisdiction the equal protection of the laws.” Further,
the Omnibus Crime Control and Safe Streets Act (1968) requires that any agency receiving
federal financial assistance (which includes nearly all municipal police departments) may
not discriminate on the basis of sex or religion in addition to race, color, or national origin.
Police use of force against a civilian is a form of violence used by the state, which must be
justified given the circumstance, and cannot be targeted toward any particular race group.

Lawsuits alleging race discrimination in policing can take multiple forms. The U.S. De-
partment of Justice can conduct “pattern or practice” investigations of civil rights violations
by police departments, which involve assessing whether any systemic issues in a department
contribute to or enable misconduct. These investigations often result in consent decree agree-
ments which mandate specific reforms necessary for the department.27 Alternatively, private
criminal defendants can sue departments for race discrimination in policing by providing
evidence of discriminatory intent, or actions that specifically target a race group, as well as
evidence of discriminatory effect, or differential treatment of “similarly situated persons” of
another race.28

Statistical evidence is often employed as one component of cases or investigations alleg-
ing race discrimination. Typically, this evidence is used to show that outcomes differ for
individuals in different race groups who are considered to be otherwise similar, or are “simi-
larly situated.” In practice, this is often accomplished through regression adjustments which
measure an outcome such as use of force among individuals who are stopped or arrested by
police, testing for the significance of race of the suspect while controlling for various sus-

27Civil Rights Division, U.S. Department of Justice. (2025). “How Department of Justice
Civil Rights Division Conducts Pattern-or-Practice Investigations.” https://www.justice.gov/

archives/file/how-pp-investigations-work/dl
28Civil Rights Division, U.S. Department of Justice. (2025). Section VI Proving Discrimination

Intentional Discrimination. Title VI Legal Manual (updated). https://www.justice.gov/crt/

fcs/T6Manual6
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pect demographics and crime characteristics (e.g. Zimroth, 2021). Critically, as underscored
throughout this paper, simple regression adjustments are limited by the fact that they do
not account for differential selection into the sample by race.

Further, a regression-based approach to measuring race discrimination typically restricts
assessments to outcomes for which all individuals in a sample are observed. For example, it is
difficult to establish race discrimination in whether an individual is arrested (or stopped) by
police, because there is no observable control group, or there are no administrative records
of individuals who might have been arrested (or stopped) but are not. Advocates and
experts often reference these types of outcome populations to benchmark population samples,
comparing, for example, the race share of stopped individuals to the race share in the resident
population.29 However, these comparisons are often viewed as flawed or inconclusive, as the
characteristics of individuals who are at risk of arrest (or stop) likely differ from the broader
population in meaningful ways that are not directly measurable in available data. Our paper
develops a practical framework to measure race disparities in use of force, which explicitly
addresses this benchmarking problem, and provides a novel approach to selection adjustment.

29Population benchmarks are common in investigative reports of discriminatory policing; see for
example: ACLU of Massachusetts. (2014). Black, Brown, and Targeted: A Report on Boston
Police Department Street Encounters from 20072010. https://www.aclum.org/sites/default/

files/wp-content/uploads/2015/06/reports-black-brown-and-targeted.pdf
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